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Appendix A. Automated Detection and Classification of 
Marine Mammal Vocalizations and Anthropogenic Noise 

A.1. Introduction 

This appendix describes the methods developed by JASCO Applied Sciences Ltd. for automated 
detection of bearded seal calls, beluga whistles, bowhead moans, bowhead songs, minke whale 
calls, and walrus grunts within the data collected during the winter 2013−2014 and summer 2014 
seasons of the Acoustic Monitoring Program in the northeastern Chukchi Sea. The algorithms, 
developed by JASCO, and their performance are described. 
Methods to automatically detect and classify marine mammal vocalizations1 in digital acoustic 
recordings have been developed over several decades. The variability of the target vocalizations 
influences the performance of detection algorithms. Some species, such as fin and blue whales, 
produce highly stereotyped vocalizations, which are easier to detect automatically than are 
sounds that vary more. For these stereotyped vocalizations, template-matching methods such as 
matched filter (Stafford 1995) and correlation of spectrograms (Mellinger and Clark 1997, 2000, 
Mouy et al. 2009) are generally effective (Mellinger et al. 2007). Other species produce highly 
varied and complex tonal sounds that are more difficult to detect and classify. Such vocalizations 
generally require band-limited energy summation for detection, followed by statistical 
classification techniques to identify species (Fristrup and Watkins 1993, Oswald et al. 2003). 
Several classification methods have been investigated for belugas (Clemins and Johnson 2006, 
Mouy et al. 2008), dolphins (Oswald et al. 2007), humpback whales (Abbot et al. 2010), 
elephants (Clemins et al. 2005), and birds (Kogan and Margoliash 1998). 
Acoustical surroundings also influence how well detection algorithms perform. Increased 
ambient noise reduces the signal-to-noise ratio of vocalizations, making them harder to detect 
and classify. Noise generated by anthropogenic activities such a shipping and seismic 
exploration, or by weather such as wind, rain, and waves, could be mistaken as biological. The 
sound propagation characteristics of the study area can alter the spectral and temporal structure 
of received vocalizations, which can interfere with detection and classification algorithms that 
have worked well in a different propagation environment. The presence of other marine animals 
vocalizing in the frequency band of interest also greatly increases the risk of misclassification. 
How influential these factors are can vary with time. Consequently, methods shown to be 
successful for a specific location, season, and species might not be successful under different 
circumstances. 
The program recordings contain vocalizations produced by several species of marine mammals, 
including bowhead (Balaena mysticetus), beluga (Delphinapterus leucas), gray (Eschrichtius 
robustus), fin (Balaenoptera physalus), and killer (Orcinus orca) whales, walrus (Odobenus 

                                                 

1 Although many sounds made by marine mammals do not originate from vocal cords, the term “vocalization” is 
used as a generic term to cover all sounds produced by marine mammals that are discussed in this report. The term 
“call” is used synonymously for brevity. 
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rosmarus), and various ice seals. Several of these species vocalize in the same frequency bands, 
and their vocalizations can occur around the same time annually. For instance, bowheads and 
walrus vocalizations can be of similar durations and frequency ranges. While an experienced 
human analyst can usually distinguish between those vocalizations, it is not simple to create a 
computer algorithm to do the same.  
Multiple sources contribute to ambient noise in the eastern Chukchi Sea. In winter, ice noise is 
highly problematic for automated detection algorithms—ice-cracking sounds can be emitted at 
surprisingly regular intervals, which resemble walrus knocks. Ice squeaking sounds are often in 
the frequency range of beluga vocalizations. Detection algorithms, therefore, must be well 
adapted to the variable and overlapping vocalizations of the species that frequent the 
northeastern Chukchi Sea as well as robust against the surrounding background noise. Because 
many terabytes of data were collected during the Acoustic Monitoring Program, the automated 
analysis methods must also be computationally efficient, with computing times taking no less 
than five times real time (per processor). 

A.2. Bowhead and Beluga Call Detection and Classification 

The bowhead acoustic repertoire includes low-frequency moans (< 1 kHz) produced in summer 
and higher frequency, more complex songs produced in fall and early winter (Delarue et al. 
2009). Belugas produce tonal whistles in the 1–8 kHz frequency band (Karlsen et al. 2002).  

Because these three sound types are produced in different frequency bands, three unique 
detectors and classifiers were created for:  

• Bowhead winter and fall songs  

• Bowhead summer moans  

• Beluga whistles 
To optimize performance on the call type of interest, each detector has unique spectrogram 
settings. The output of each detector was run through its associated classifier. 

The detection/classification process consists of the following steps: 
1. Creating the normalized spectrogram. 
2. Extracting the time-frequency contours using the tonal detector developed by Mellinger et 

al. (2011). 
3. Extracting 46 features from each contour to create binary random forest models.  
4. Classifying the contours as either “target species” (bowhead or beluga) or “other” with the 

random forest models. 
5. Post-processing of bowhead moans and songs to combine parts of single calls that were 

detected separately.  
Once random forest models were created for bowhead moans, bowhead songs, and beluga 
whistles, they were tested on the test datasets described in Section A.6. The 
detection/classification process is described in detail in the following sections. 
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Figure A-1. Steps in the detection/classification process. 

A.2.1. Step 1: Spectrogram Processing 
The first step of the detection process was the calculation of the spectrogram. Spectrogram 
resolutions differed for each species to ensure accurate time-frequency representation of the calls 
(Table A-1). To attenuate long spectral rays in the spectrogram due to vessel noise and to 
enhance weaker transient biological sounds, the spectrogram was normalized in each frequency 
band (i.e., each row of the spectrogram) with a split-window normalizer. The size of the window 
and the notch of the normalizer are indicated in Table A-1. For the processing of beluga whistles, 
the spectrogram was smoothed by convolving it with a 2-D Gaussian kernel (Gillespie 2004). 
Gaussian smoothing was not used for analyzing bowhead calls because it did not improve the 
performance of the contour extraction. 
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Table A-1. Spectrogram parameters for each call type. 

 Bowhead 
winter songs 

Bowhead 
summer moans 

Beluga 
whistles 

Analysis frame size (samples) 4096 4096 1024 
Overlap between frames (samples) 3500 3500 896 
FFT size (samples) 16,384 16,384 1024 
Window function Hanning Hanning Blackman 
Normalizer window size (s) 1.5 1.5 0.7 
Normalizer notch size (s) 0.4 0.4 0.1 
Gaussian kernel size (bins) n/a n/a 3×3 

A.2.2. Step 2: Contour Extraction 
Vectors representing the time-evolution of the fundamental frequency of marine mammal calls 
(referred to as “contours”) were extracted from the spectrograms with the MATLAB version of a 
tonal detector developed by Mellinger et al. (2011). This tonal detector is implemented in the 
latest version of the widely-used Ishmael acoustic analysis software (Mellinger 2001). The 
algorithm works as follows, based on user-defined parameters (chosen empirically, Table A-2):  
1. Candidate frequency peaks were identified for each time slice of the spectrogram in the 

frequency band [f0, f1]. Peaks of height h (dB) above the noise threshold (defined as the 
percentile Pbg of the spectrum values) that are the highest point in their neighborhood (n Hz 
wide) were selected.  

2. Successive peaks differing in frequency by less than fd were connected.  
3. To accurately follow simultaneous calls, the location of the next candidate peak was 

estimated by fitting a line to the most recent k seconds of the contour and looking for 
spectral peaks where the line continues. 

4. Candidate contours must persist for a minimum duration d.  
Figure A-1 shows an example of contours extracted from a recording containing beluga whistles. 

Table A-2. Contour extraction parameters for each call type. 

Symbol Description Bowhead winter 
songs 

Bowhead summer 
moans 

Beluga 
whistles 

Pbg Percentile for estimating 
background noise 50 50 50 

h Height above that estimate (dB) 2 2 1.2 
n Neighborhood width (Hz) 50 50 250 

fd Frequency difference from one step 
to the next (Hz) 25 25 300 

d Minimum duration (s) 0.5 0.5 0.3 

k Duration for estimating next spectral 
peak location (s) 0.2 0.2 0.2 

f0 Minimum frequency (Hz) 1000 50 50 
f1 Maximum frequency (Hz) 1000 50 8000 
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A.2.3. Step 3: Feature Extraction 
Using custom MATLAB software, 46 features were measured from each extracted time-frequency 
contour. These features describe the frequency content, duration, and shape of the contour 
(slopes, number of inflection points, etc., Table A-3). 
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Table A-3. The 46 features measured from each time-frequency contour. 

Feature Definition 
Beginning sweep Slope at the beginning of the call (1 = positive, −1 = negative, 0 = flat) 

Beginning up Binary variable: 1 = beginning slope is positive, 0 = beginning slope is 
negative 

Beginning down Binary variable: 1 = beginning slope is negative, 0 = beginning slope is 
positive 

End sweep Slope at the end of the call (1 = positive, −1 = negative, 0 = flat) 
End up Binary variable: 1 = ending slope is positive, 0 = ending slope is negative 
End down Binary variable: 1 = ending slope is negative, 0 = ending slope is positive 
Duration Call duration (s) 
Beginning frequency Frequency at start of call (Hz) 
End frequency Frequency at end of call (Hz) 
Minimum frequency, fmin Minimum frequency (Hz) 
Maximum frequency, fmax Maximum frequency (Hz) 
Frequency range fmax–fmin (Hz) 
Mean frequency Mean of frequency values (Hz) 
Median frequency Median of frequency values (Hz) 
Standard deviation 
frequency Standard deviation frequency values (Hz) 

Frequency spread Difference between the 75th and 25th percentiles of the frequency 
Quarter frequency Frequency at one-quarter of the duration (Hz) 
Half frequency Frequency at one-half of the duration (Hz) 
Three-quarter frequency Frequency at three-quarters of the duration (Hz) 
Center frequency, fc (fmax–fmin)/2 + fmin 
Relative bandwidth (fmax–fmin)/fc 
Maxmin fmax/fmin 
Begend Beginning frequency/end frequency 

Steps Number of steps (≥ 10% increase or decrease in frequency over two 
contour pts) 

Inflection points Number of inflection points (changes from positive to negative slope or 
vice versa) 

Max delta Maximum time between inflection points 
Min delta Minimum time between inflection points 
Maxmin delta Max delta/Min delta 
Mean delta Mean time between inflection points 
Standard deviation delta Standard deviation of the time between inflection points 
Median delta Median of the time between inflection points 
Mean slope Overall mean slope 
Mean positive Mean positive slope 
Mean negative Mean negative slope 
Mean absolute Mean absolute value of the slope 
Ratio posneg Mean positive slope/Mean negative slope 
Percent up Percentage of the call having positive slope 
Percent down Percentage of the call having negative slope 
Percent flat Percentage of the call having zero slope 
Up-down Number of inflection points going from positive to negative slope 
Up-flat Number of times the slope changes from positive to zero 
Flat-down Number of times the slope changes from zero to negative 
Step-up Number of steps with increasing frequency 
Step-down Number of steps with decreasing frequency 
Step-duration Number of steps/Duration 
Inflection-duration Number of inflection points/Duration 

 



Automated Detection and Classification of Marine Mammal Vocalizations and Anthropogenic Noise A-7 

A.2.4. Step 4: Classification 
A random forest classifier was created for each call type (bowhead winter songs, bowhead 
summer moans, and beluga whistles). A random forest is a collection of decision trees that grow 
using binary partitioning of the data based on the value of one of the 46 features (see Table A-3) 
at each branch, or node. Randomness is injected into the tree-growing process by choosing the 
feature to use as the splitter based on a random subsample of the features at each node (Breiman 
2001). Each of these random forests was a binary classifier, so contours were classified as “target 
species” (i.e., bowhead or beluga whale) or “other”. 
The number of decision trees to include in each random forest was determined by empirical trials 
on datasets of calls extracted from annotated recordings. Recordings from prior years were used 
to train and optimize the random forests: winter 2008–2009 program data for the bowhead winter 
song and beluga whistle detectors, and summer 2009 program data for the bowhead summer 
moan detector. Contours were detected and extracted based on parameters specific to bowhead or 
beluga sounds (Table A-2).  
Sample sizes for each trial dataset are given in Table A-4. First, these datasets were randomly 
sampled so each class (“target species” and “other”) had equal sample sizes. Sampling was 
performed so that the proportion of species and call-types within species in the “other” class 
reflected those in the full dataset. Next, a random forest analysis was run on the sampled data. 
The sampling and random forest analyses were each repeated 100 times. The output for each 
random forest analysis included out-of-bag (OOB) error estimates for forests of 1–800 trees. To 
calculate OOB errors, each tree was grown using about two-thirds of the trial data. The 
remaining third of the trial data was used as the OOB test data, which was used to evaluate the 
performance of the tree. The OOB error estimates were averaged over 100 runs (Figure A-2). 
The number of decision trees to include in the random forest was when the OOB error 
approached its asymptote, because after this point adding more trees did not result in 
significantly better classifications. Based on these analyses, all three random forests had 300 
decision trees.  

Table A-4. Sample size of the trial datasets used to train and optimize the random forest classifiers for 
each call type. 

Class Winter 2008–2009 
Beluga whistles 

Winter 2008–2009  
Bowhead songs 

Summer 2009 
Bowhead moans 

Beluga 1295 24 0 
Bowhead 2837 3989 754 
Bearded seal 20,331 17,887 269 
Non-biological noise 9443 6491 536 
Ribbon seal 530 0 0 
Unknown 864 1148 1177 
Walrus 483 199 625 
Killer whale 0 0 13 
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Figure A-2. Out-of-bag (OOB) error rates averaged over 100 random forest runs (example of the beluga 
whistle classifier). 

Another output of the random forest analysis is the Gini importance index (Breiman et al. 1984), 
which measures how strongly each feature contributes to the random forest model predictions. 
The optimal subset of features included in each random forest was based on this importance 
index. Feature importance was averaged over all 100 runs, which were described above 
(Figure A-3). The three random forests included the features most important to the model 
predictions (Table A-5). 

Table A-5. Features included in bowhead moan, bowhead song, and beluga whistle random forests, listed 
in order of importance to the model. 

Bowhead moan Bowhead song Beluga whistle 
Minimum frequency Maximum frequency Mean frequency 
Median frequency Center frequency End frequency 
Mean frequency Beginning frequency Median frequency 
Three-quarter frequency Mean frequency Three-quarter frequency 
End frequency End frequency Center frequency 
Half frequency Mean slope Half frequency 
Quarter frequency Median frequency Maximum frequency 
Beginning frequency Quarter frequency Quarter frequency 
Duration Three-quarter frequency Minimum frequency 
Center frequency Half frequency Beginning frequency 
Mean negative slope Mean absolute slope  
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Figure A-3. Gini importance indices; averaged over 100 random forest runs. 

A.2.5. Step 5: Post-Processing 
Bowhead calls recorded in the winter program generally consisted of several harmonics, which 
the automated detector considered separate calls, thus overestimating the number of calls in the 
recordings. To avoid this, all bowhead detections that overlapped in time were merged to form a 
single detection. Only detections occurring below 300 Hz were considered. No post-processing 
was performed on beluga detections. 

A.3. Walrus Grunt Detection and Classification 

The algorithm first calculated the spectrogram and normalized it for each frequency band. Then 
the spectrogram was segmented between 10 and 1000 Hz to define acoustic events in the 
spectrogram. For each event, a set of features representing salient characteristics of the 
spectrogram were extracted. Extracted features were presented to a five-class random forest 
classifier to determine the class of the sound detected (i.e., “walrus grunt”, “seismic”, 
“bowhead”, “bearded seal”, or “other”). During the training phase, features of known sounds 
(i.e., manual annotations) were extracted to create the random forest model. Figure A-4 
illustrates the detection process. 
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Figure A-4. Steps of the walrus grunt detector. Blue lines in the middle panel indicate edges of detected 
objects. Colors in the bottom panel indicate whether objects were classified as walrus (WAG, red), 
bowhead (BH, green), seismic (S, yellow), beaded seal (BS, dark blue), or noise (NN, light blue). 

A.3.1. Step 1: Spectrogram Processing 
The spectrogram resolution was chosen to ensure accurate time-frequency representation of the 
walrus grunts (Table A-6). The spectrogram was normalized by a split window normalizer using 
a window of 3 s and a notch of 1 s (Struzinski and Lowe 1984). 

Table A-6. Spectrogram parameters used in the walrus grunt detector. 

Spectrogram parameters  
Analysis frame size (samples) 1024 
Overlap between frames (samples) 700 
FFT size (sample) 2048 
Window function Blackman 

 

A.3.2. Step 2: Spectrogram segmentation 
The spectrogram is segmented by calculating the local variance of energy values on a 2-
dimensional kernel. The local variance was calculated twice using different sizes of kernel. The 
first pass was performed using a kernel of 0.1 s by 50 Hz. Areas of the spectrogram with a local 
variance less than 0.6 were set to zero (variance units: energy2). The second pass used a kernel of 
size 0.3 s by 100 Hz. Areas of the spectrogram with a local variance less than 0.6 were set to 
zero (variance units: energy2). The first pass defined each component of the transients at small 
scale, while the second pass removed small noise objects and group together calls with 
harmonics. Edges of the remaining area of the spectrogram were defined using the Moore 
Neighborhood algorithm (Ainslie and McColm 1998). Figure A-4 (middle panel) shows an 
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example of the segmentation process. Finally, only objects longer than 100 ms and larger than 
20 Hz were kept for classification. 

A.3.3. Step 3: Feature Extraction 

Features for each object were extracted on a time-frequency box that contains 95% of the energy 
of the initial object (red box in Figure A-5; top panel). Each object was represented by 40 
features, several of which were calculated following Fristrup and Watkins (1993) and Mellinger 
and Bradbury (2007), using the spectrogram, frequency envelope, and amplitude envelope of the 
signal (Figure A-5). The frequency envelope is the sum of the spectrogram amplitudes for each 
frequency. The maximum of the frequency envelope was normalized to 1. The amplitude 
envelope is the sum of the spectrogram amplitude values for each time step. The frequency and 
amplitude envelopes were interpolated to have a resolution of 1 Hz and 1 ms respectively. 
Features include the following:  

• Median frequency, fmed: Based on the frequency envelope. The cumulative sum of the 
spectrum was calculated by moving from low to high frequencies. The median frequency is 
the frequency at which the cumulative energy reaches 50% of the total energy (green dashed 
line in Figure A-5). 

• Spectral inter-quartile range: Calculated by defining the 25th percentile of the energy on each 
side of the median frequency (dashed blue lines in Figure A-5). Each quartile was defined as 
frequency for which the cumulative energy calculated from the median frequency equaled 
25% of the total energy. The spectral inter-quartile range is the difference between the higher 
(fQ3) and lower quartiles (fQ1). 

• Spectral asymmetry: Skewness of the spectral envelope calculated as  
(fQ1 + fQ3–2fmed)/(fQ1 + fQ3). 

• Spectral concentration : Calculated by ranking amplitude values of the spectral envelope 
from largest to smallest. The cumulative sum of ranked amplitude values was computed 
beginning with larger values until 50% of the total energy was reached. The lowest frequency 
index included in the additive set was considered the minimum; the highest index was the 
maximum, with their difference providing the spectral concentration (red box in Figure A-5). 

• Maximum frequency peak: Frequency of the highest amplitude peak in the spectral envelope 
(red dot in Figure A-5). 

• Maximum frequency peak width: Width (Hz) of the maximum frequency peak measured at 
the point where amplitude values on each side of the peak reached the 75th percentile of all 
the spectral envelope amplitude values (red vertical line in Figure A-5) 

• Difference in Hz between the maximum frequency peak and the median frequency of the 
frequency envelope. 

• Maximum and minimum frequency of the object. 

• Frequency bandwidth and duration of the object. 

• Variance and kurtosis of frequency envelope: These describe the distribution of the 
amplitude in the spectral envelope (Balanda and MacGillivray 1988). 
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• Frequency modulation index: Calculated as follows:  

ο First, the maximum frequency of the maximum amplitude peak was extracted for each 
time slice of the spectrogram. Frequency values of the selected peaks were stored in the 
vector Fmax, and their associated energy values in the vector Emax. Only peaks with an 
amplitude value exceeding the median amplitude of the spectrogram were considered 
(white dots in Figure A-5a).  

ο Second, the weighted maximum frequency offset vector O was defined as  
O = (Fmax–Xmed)·Emax/max(Emax), where Xmed is a scalar representing the median frequency 
of the vector Fmax. The frequency modulation index was defined as the standard deviation 
of the vector O. 

• Frequency and correlation value of the maximum peak in the autocorrelation function 
calculated on the frequency envelope. 

• Temporal inter-quartile range: same as the frequency inter-quartile range but calculated on 
the time envelope. 

• Temporal asymmetry: same as the frequency asymmetry but calculated on the time envelope.  

• Temporal concentration: same as the frequency envelope but calculated on the time 
envelope.  

• Variance and kurtosis of time envelope. 

• Period and correlation value of the maximum peak in the autocorrelation function calculated 
on the time envelope.  

• Several features based on the contour representing the evolution in time of the median 
frequency. These include the number of inflection points, upsweep and downsweep rates, 
standard deviation, and variance of frequency values.  
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Figure A-5. Extraction of features used in the walrus grunt classifier: (a) Spectrogram of the original object 
detected. The red rectangle indicates the zone including 95% of the energy; (b) spectrogram of the 
resized object including 95% of the energy. White dots indicate the median at each time step and the red 
line indicates the median contour; (c) frequency envelope (black line), with the median frequency (green 
line), the upper and lower quartiles (blue lines), and the spectral concentration (red box); (d) amplitude 
envelope with the median (green line), the upper and lower quartiles (blue lines), and the temporal 
concentration (red box).  

A.3.4. Step 4: Classification 
Classification was performed using a random forest classifier (Breiman 2001), which was trained 
using all manual annotations in recordings from the summer 2011 Acoustic Monitoring Program. 
The random forest was defined with these four classes: “walrus grunt”, “seismic”, “bowhead”, 
“bearded seal”, and “other”. Training the classifier, optimizing the number of decision trees in 
the forest, and selecting the most relevant features based on the Gini index, were performed 
using the same process described for bowhead and beluga whale call detection (Section A.2).  

A.4. Bearded Seal Call Detection 

The automated detection and classification of bearded seal calls is performed in four steps: 
1. Calculation and binarization of the spectrogram 
2. Definition of time-frequency objects 
3. Extraction of features 
4. Classification 

A.4.1. Step 1: Spectrogram Processing  
The first step of the detection process was calculating the spectrogram. Table A-7 lists the 
spectrogram parameters. To attenuate long spectral rays in the spectrogram due to vessel noise, 
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and to enhance weaker transient biological sounds, the spectrogram was normalized in each 
frequency band (i.e., each row of the spectrogram) with a median normalizer. Table A-7 lists the 
size of the window used by the normalizer. The normalized spectrogram was binarized by setting 
all the time-frequency bins that exceed a normalized amplitude of 4 (no unit) to 1 and the other 
bins to 0. 

Table A-7. Spectrogram parameters used in the bearded seal call detector. 

Spectrogram parameters Bearded seal calls 
Analysis frame size (samples) 4096 
Overlap between frames (samples) 3072 
FFT size (samples) 4096 
Window function Reisz 
Normalizer window size (s) 120 
Binarization threshold (no units) 4 

 

A.4.2. Step 2: Definition of Time-Frequency Objects 
The second step of the detection process consisted of defining time-frequency objects (or events) 
by associating contiguous bins in the binary spectrogram. The algorithm implemented is a 
variation of the flood-fill algorithm (Nosal 2008). Every spectrogram bin that equals 1 and is 
separated by less than three bins in both time and frequency are connected. Figure A-6 illustrates 
the search area used to connect spectrogram bins. The bin connection process moves from oldest 
data to newest and from lowest frequency to highest. Each group of connected bins is referred to 
as a time-frequency object. A spectrogram bin can only belong to one time-frequency object. 

 
Figure A-6. Illustration of the search area used to connect spectrogram bins. The white square represents 
a bin of the binary spectrogram equaling 1. The green squares represent the bins to which it could 
potentially be connected. The algorithm advances from left to right so gray cells left of the test cell need 
not be checked; however, checking the far left cells could join broken contours.  

Because time-frequency objects are sensitive to noise generated by small pleasure craft or fishing 
vessels near recorders—they can generate many time-frequency objects that might be mistaken 
for marine life calls—to reduce false detections a vessel detector is incorporated into the time-
frequency event definition process. Vessel noise is considered detected when at least five 
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frequencies have detected contours for 5 s. Files with at least two vessel detections are not 
processed further. 

A.4.3. Step 3: Feature extraction 
The third step consists of representing each of the time-frequency objects extracted in the 
previous step by a set of features. Features of the time-frequency objects were defined by: 

• Start time (date) 

• Duration (s) 

• Minimum frequency (Hz) 

• Maximum frequency (Hz)  

• Bandwidth (Hz) 

A.4.4. Step 4: Classification 
The final step consisted of classifying the time-frequency objects by comparing their features 
against a call definition dictionary that defines the features of the vocalizations present in the 
Chukchi Sea based on the literature and on analysts’ observations. In the present study, only 
bearded seal calls were represented in the dictionary (Table A-8). The classification process can 
handle vocalizations made of several time-frequency objects, such as vocalizations with 
harmonics (“Multi-Frequency-Components”) and vocalizations made of a succession of time-
frequency objects such as seal trills and groups of beluga, dolphin, or beaked whale whistles 
(“Multi-Time-Components”).  

Vocalizations in the dictionary are defined by the following features: 

• Minimum frequency 

• Maximum frequency 

• Minimum duration: at least one spectrogram time slice. 

• Maximum duration 

• Minimum bandwidth 

• Maximum bandwidth 

• Multi-Frequency-Component (Boolean): for call types where contours should be grouped in 
frequency, with some time overlap before applying the frequency, duration, and bandwidth 
constraints. Each contour that is added to the multi-component contour has the following 
constraints applied: 

• minComponentDuration: minimum duration for a contour to be added to the multi-
component contour. 

• minComponentBW: minimum bandwidth for a contour to be added to the multi-component 
contour. 
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• Minimum and maximum frequencies: as per the global definition. 

• Multi-Time-Component (Boolean): for call types where contours should be grouped in time 
before applying the frequency, duration, and bandwidth constraints. Each contour that is 
added to the multi-time-component contour has the following constraints applied: 

• minTimeComponentDuration: minimum duration for a contour to be added to the multi-time-
component contour. 

• minTimeComponentBW: minimum bandwidth for a contour to be added to the multi-time-
component contour. 

• Minimum and maximum frequencies: as per the global definition. 

Table A-8. Definitions for the time-frequency features of bearded seal calls in the Chukchi Sea in the 
summer and in the winter. 

 Call Type 
Min/Max 
frequency 
(Hz) 

Min/Max 
duration 
(s) 

Min/Max 
bandwidth 
(Hz) 

Min/Max 
sweep 
rate 

Multi-Frequency-
component 
settings 

Multi-time-
component 
settings 

      Min BW=30  

 Full Trill 250/5000 5/60 500/– −100/−10 Max BW=200 0 

      Min Dur=0.5  

      Max Dur=5  

Winter      MaxFreqShift=100  

Calls      Min BW=20  

      Max BW=100  

 Trill end 250/1200 10/60 100/– −50/−5 Min Dur=0.5 0 

      Max Dur=8  

      MaxFreqShift=100  

Summer Downsweep 200/1500 0.6/10 38/– −200/−20 N/A 0 

Calls Upsweep 200/1500 0.6/4.5 100/– 50/250 N/A 0 

 
Figure A-7 shows a block diagram of the several stages of the classification algorithm. The 
algorithm consists of two loops. The outer loop iterates through all the time-frequency objects. 
For each time-frequency object that has not yet been classified, the object’s features are 
compared to each call in the dictionary. If the call is a multi-frequency-component or multi-time-
component type, the list of time-frequency objects is searched for unsorted objects that meet the 
multi-components settings (see Table A-8).  
The total time-frequency object duration, minimum and maximum frequencies, and frequency 
bandwidth are compared to the call’s definitions in the dictionary. If the object’s features fall 
within the call type’s bounds, then the bandwidth (BWi) and duration (Ti) indices are computed: 

dictionary

object
i BW

BW
BW =

 dictionary

object
i T

T
T =
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If either of these indices exceeds the empirically chosen threshold of 1.5 times the current best 
index, then the current best-match call type is updated. The 1.5 threshold for updating the best-
match call type means the algorithm prefers call types that are defined earlier. Therefore, if, for a 
particular recording, killer whales are more likely to occur than humpbacks, the killer whale call 
definitions should occur first in the mammalContours.xml definition file.  
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Figure A-7. Block diagram of the classification algorithm. 

The classification algorithm also implements a time-based filter. Because the classification 
algorithm is intended to count calls of species expected to be in an area, it is reasonable to limit 
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the algorithm to those species. For instance, bowhead calls won’t be detected before 1 Sep or 
after 1 Jan in the Chukchi Sea. Manual analysis is used to detect extra-limital species and 
unusual detections as a function of time. Figure A-8 shows an example of detection and 
classification of bearded seal calls. 

 
Figure A-8. (Top) Pressure in digital units and (bottom) spectrogram of bearded seal trills (500–200 Hz; 
downsweeps in center) detected using the multi-time-component contour type. Beluga and bowhead calls 
are also visible in this figure (16 kHz sample rate, 4096 pt STFT, 1024 pt advance).  

A.5. Minke Whale Detection 

The spectrogram correlation technique used for detecting minke whale calls is based on Mouy et 
al. (2009) and was configured to detect the boing calls (Rankin and Barlow 2005): 
The spectrogram is computed and normalized using a split-window normalizer with a 30 s 
window and a 2 s notch (Struzinski and Lowe 1984). 
The spectrogram is then binarized by calculating the variance of energy values around each 
spectrogram bin on a time-frequency kernel of size 1 s by 10 Hz. Bins of the spectrogram with a 
local variance less than 0.4 and a normalized energy value less than 2 are set to zero. Remaining 
spectrogram bins are set to 1.  
A set of synthetic binary time-frequency templates representing typical minke whale boing calls 
were created as successions of linear time-frequency segments defined by their starting 
frequency, ending frequency, duration, frequency width, frequency span, and silence duration 
before and after the call. Here two time-frequency template were used (Table A-9) 
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Table A-9. Parameters of the time-frequency templates used to detect minke whale boing calls. 

 Template 1 Template 2 
Segment number 1 2 1 2 3 4 
Segment start time (s) 1 1.8 1 1.8 1 1.8 
Segment stop time (s) 1.8 3.5 1.8 3.5 1.8 3.5 
Segment frequency width (Hz) 15 15 15 15 15 15 
Segment start frequency (Hz) 1365 1390 1365 1390 1497 1517 
Segment stop frequency (Hz) 1390 1390 1390 1390 1517 1517 
Min. frequency of the template (Hz) 1300 1300 1300 1300 1300 1300 
Max. frequency of the template (Hz) 1470 1470 1570 1570 1570 1570 
Duration of the template 4.5 4.5 4.5 4.5 4.5 4.5 

 
To create a detection function, a correlation index that measured how well the synthetic 
templates matched the binary spectrogram was defined for each time step of the spectrogram and 
for each of the templates. The occurrences of minke whale call detections were defined by parts 
of the detection function that exceeded an empirically chosen threshold, Tdetec. Here Tdetec = 0.1 
for both templates. 
Figure A-9 illustrates the detection process. 
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Figure A-9. Minke whale boing call detection process. Panel 1: Spectrogram representing 7 boing calls. 
Panel 2: Binarized spectrogram. Panel 3: Detection function for each template (black crosses indicated 
peaks above the detection threshold Tdetec. Panel 4: Results of the detection process (red boxes indicate 
boing call detections). 

A.6. Performance Evaluation 

A.6.1. Test Datasets  
The automated detectors/classifiers must be verified with a test dataset that represents the spatio-
temporal variations of the marine mammal calls and background noise in the entire dataset. Since 
the acoustic environment in the eastern Chukchi Sea differs between winter and summer, a 
unique test dataset was used to test the detection/classification algorithms for each season. For 
the winter 2013–2014 Acoustic Monitoring Program data, marine mammal calls were fully 
manually-annotated in 186 samples adding up to 5.2 hours of recordings chosen from Stations 
B5, CL5, PL10, PL50, W10, W50, and WN40. For the summer 2014 Acoustic Monitoring 
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Program data, marine mammal calls were fully manually-annotated in 138 samples adding up to 
10.6 hours of recordings chosen from Stations BGB, BGC, BGE, BGF, CLN120B, CLN40, 
CLN90B, KL01, PL30, PL50, PLN20, PLN40, PLN60, PLN80, W10, W30, W50, WN20, 
WN40, and WN80.  

A.6.2. Performance Metrics  
The decisions made by detectors/classifiers can be represented as a confusion matrix. The 
confusion matrix consists of four categories: true positives (TP), false positives (FP), true 
negatives (TN), and false negatives (FN). Table A-10 depicts the confusion matrix, where E is 
the signal event we want to detect/classify and E  is a non-event that we want to ignore (i.e., 
noise). The definition of E  varies depending on the detector/classifier. 

Table A-10. Confusion matrix. 

  True Result 

  E E  

Detection/ 
classification  
result 

E TP FP 

E  FN TN 

 
A true positive (TP) corresponds to a signal of interest being correctly classified as such. A false 
negative (FN) is a signal of interest being classified as noise (i.e., missed). A false positive (FP) 
is a noise classified as a signal of interest (i.e., a false alarm). A true negative (TN) is a noise 
correctly classified as such. 
The numbers of TPs, FPs, and FNs were calculated for each detector and test dataset by 
comparing the manual annotations of marine mammal calls (considered true results, i.e., ground 
truth) with the automated detections/classifications. Numbers of FPs, TPs, and FNs were 
calculated on all dataset samples containing annotations of the target call type. If a manually-
annotated call was automatically detected/classified, then the detection was considered a TP, if 
undetected, it was a FN. Each automated detection occurring in the sample that did not 
correspond to a manually-annotated call was considered a FP. 

A.6.3. Precision and Recall  
To assess the performance of the detectors/classifiers, precision (P) and recall (R) metrics were 
calculated based on the numbers (N) of TPs, FPs, and FNs: 

 FPTP

TP

NN
NP
+

=
 FNTP

TP

NN
NR
+

=
 (1) 

P measures exactness, and R completeness. For instance, a P of 0.9 for beluga means that 90% of 
the detections classified as beluga were in fact beluga calls, but says nothing about whether all 
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beluga vocalizations in the dataset were identified. An R of 0.8 for beluga means that 80% of all 
beluga calls in the dataset were classified, but says nothing about how many beluga 
classifications were wrong. Thus, a perfect detector/classifier would have P = R = 1. Neither P 
nor R alone can describe the performance of a detector/classifier on a given dataset; both metrics 
are required. 
The advantages of the P-R metric over the True-Positive Rate (TPR) and False-Positive Rate 
(FPR) generally used in Receiver Operating Characteristic (ROC) curves include:  

• The P-R metric is more adapted to skewed datasets.  

• An algorithm dominates in ROC space only if it dominates in P-R space (Davis and Goadrich 
2006).  

• Most significantly, not taking into account NTN. A subjective criterion is necessary to define 
the length of time that counts as one TN value over a continuous recording that contains no 
targeted vocalizations, whereas NTN does not need to be calculated for the P-R metric, so P-R 
values are better suited to analyzing these time-continuous data. 

A.6.4. Signal-to-Noise Ratio 
The signal-to-noise ratio (SNR) is the ratio of signal power (Ps) to noise power corrupting the 
signal (Pn). The SNR compares the level of the desired signal to the level of the background 
noise; the greater this ratio, the less obtrusive the background noise. SNR is defined in decibels 
as: 

 









n

s

P
P

10log10=SNR
 (2) 

The signal power of a call in a spectrogram is the average power of the call within the frequency 
range of the vocalization; the noise power is the average power before and after the call within 
the same frequency band (Mellinger 2004, Mellinger and Clark 2006). The duration of the noise 
signal measured before and after the call equals the duration of the call (Figure A-10). This 
calculation was performed on the original spectrogram without noise reduction. To quantify 
detector performance for various SNRs, NFN and NTP were calculated for SNR intervals 
of < 0 dB, 0–5 dB, 5–10 dB, and ≥ 10 dB. P values are influenced by the background noise and 
not by the SNR of the calls. Therefore, P values per SNR intervals were not calculated.  
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Figure A-10. Calculation of the signal-to-noise ratio (SNR). The power of the call (Ps) is calculated in the 
red box; the power of the noise (Pn) is calculated in the black boxes on either side of the call. 

A.7. Call Count Estimation  

Because the detectors/classifiers have false alarms and missed calls, they are imperfect and, as 
such, the number of automated detections does not exactly equal the actual number of calls 
present in the recordings. A better estimate can be achieved using P and R. These values 
characterize the relationship between the detector/classifier and the dataset. Therefore, these 
values are specific to, and depend on, both the detector/classifier and the dataset. If the subset of 
data used to characterize P and R is representative of the entire dataset, P and R can be used to 
extrapolate the total number of vocalizations from the number of detected vocalizations. The 
total number of detections (Ndet) found by the detector/classifier is the sum of the number of true 
and false positives:  

  (3) 

From the definition of P (Equation 1), NTP can be defined as: 

  (4) 

The total number of vocalizations in the data (Nvoc) is the sum of those correctly identified (TP) 
and those that were missed (FN): 

  (5) 

Therefore, R becomes: 

  (6) 
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Combining Equations 4 and 6 yields the total number of vocalizations in terms of P, R, and the 
number of detections: 

  (7) 

All call-count estimation plots in the main report (bubble-plots) were produced using Equation 7. 

A.8. Detector/Classifier Performance  

The performance of each automated detector/classifier is evaluated using test datasets from both 
the winter 2013–2014 and summer 2014 programs. The test datasets consist of all fully 
manually-annotated data samples for each program. For each detector/classifier and each 
season’s dataset, the precision (P) and recall (R) of the detector/classifier on the entire test 
dataset are given. The SNR distribution of the test dataset over four SNR intervals and the R 
values calculated for each SNR interval are shown in Figure A-11. 

A.8.1. Bowhead Winter Songs 
The bowhead winter song detector/classifier was tested against the fully manually-annotated 
recordings from winter 2013–2014. The test dataset had 475 manually-annotated bowhead songs 
(Figure A-11, left). The performance of the bowhead song detector/classifier on the test dataset 
yielded P = 0.74 and R = 0.30. As expected, the detector/classifier was able to detect more calls 
at higher SNRs (Figure A-11, right). The highest R value was 0.45, obtained for calls with SNRs 
between 5 and 10 dB.  

 
Figure A-11. Performance of the bowhead winter song detector/classifier on the winter 2013–2014 test 
dataset. (Left) Signal-to-noise ratio (SNR) distribution of calls in the test dataset. (Right) Recall of the 
detector/classifier per call SNR interval. 
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A.8.2. Bowhead Summer Moans 
The bowhead summer moan detector/classifier was tested against fully-annotated recordings 
collected during the summer 2014 monitoring program. The test dataset had 527 manually-
annotated bowhead moans (Figure A-12, left). The performance of the bowhead moan 
detector/classifier on the test dataset yielded P = 0.81 and R = 0.39. As expected, R increased 
with increasing SNR (Figure A-12, right). 

 
Figure A-12. Performance of the bowhead summer moan detector/classifier on the summer 2014 test 
dataset. (Left) Signal-to-noise ratio (SNR) distribution of calls in the test dataset. (Right) Recall of the 
detector/classifier per call SNR interval. 

A.8.3. Beluga Whistles 
The beluga whistle detector/classifier was used to analyze data from both the winter 2013–2014 
and the summer 2014 monitoring programs. Performance of the detector/classifier was evaluated 
separately on each program given the very different characteristics of the background noise 
between the summer and the winter. 

Winter 2013–2014 Program 
The test winter dataset had 497 manually-annotated beluga whistles (Figure A-13, left). Most 
annotated whistles had a SNR between 0 and 5 dB. The beluga whistle detector/classifier had 
P = 0.56 and R = 0.55. The highest R was 0.67, obtained for whistles with SNR > 10 dB 
(Figure A-13, right). 
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Figure A-13. Performance of the beluga whistle detector/classifier on the winter 2013–2014 test dataset. 
(Left) Signal-to-noise ratio (SNR) distribution of calls in the test dataset. (Right) Recall of the 
detector/classifier per call SNR interval. 

Summer 2014 Program 
The summer test dataset had 496 manually-annotated beluga whistles (Figure A-14 , left). Most 
annotated whistles had a SNR between 0 and 5 dB. The beluga whistle detector/classifier had 
P = 0.68 and R = 0.55. The highest R was 0.57, obtained for whistles with SNR between 0 and 
5 dB (Figure A-14, right) 

 
Figure A-14. Performance of the beluga whistle detector/classifier on the summer 2014 test dataset. (Left) 
Signal-to-noise ratio (SNR) distribution of calls in the test dataset. (Right) Recall of the detector/classifier 
per call SNR interval. 

A.8.4. Walrus Grunts 
Walrus grunts were recorded in both winter and summer. Therefore, the performance of the 
walrus grunt detector/classifier was calculated independently for the summer 2014 and for the 
winter 2013–2014 datasets (i.e., one set of P and R values for each datasets). 
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Winter 2013–2014 Program 
The winter 2013–2014 test dataset had 231 manually annotated walrus calls (Figure A-15, left). 
The walrus call detector/classifier had P = 0.72 and R = 0.28 for the winter 2013–2014 test 
dataset. R for calls with a SNR > 10 dB is lower than that for calls with a SNR of 5–10 dB due to 
the misrepresentation of that SNR interval in the winter 2013–2014 test dataset (only 13 walrus 
grunts annotated with a SNR > 10 dB, (Figure A-15, right). Similarly, R for calls with a 
SNR < 0 dB is higher than that for calls with a SNR of 0–5 dB due to the under-representation of 
that SNR interval (only 15 annotated walrus grunts. 

 
Figure A-15. Performance of the walrus grunt detector/classifier on the winter 2013–2014 test datasets. 
(Left) Signal-to-noise ratio (SNR) distribution of calls in the combined test datasets. (Right) Recall of the 
detector per call SNR interval. 

Summer 2014 Program 
The walrus grunt detector/classifier was tested against fully-annotated recordings collected 
during the summer 2014 program. The test dataset had a total of 358 manually-annotated walrus 
grunt (Figure A-16, left). The performance of the walrus grunt detector/classifier on the test 
dataset yielded P = 0.52 and R = 0.88. The highest R was 0.53 and was obtained for grunts with 
SNR between 5 and 10 dB (Figure A-16, right). 
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Figure A-16. Performance of the walrus grunt detector/classifier on the summer 2014 test datasets. (Left) 
Signal-to-noise ratio (SNR) distribution of calls in the combined test datasets. (Right) Recall of the 
detector per call SNR interval. 

A.8.5. Bearded Seal Calls 
Bearded seal calls were recorded in both winter and summer. Therefore, the performance of the 
bearded seal calls detector/classifier was calculated independently for the summer 2014 and for 
the winter 2013–2014 datasets (i.e., one set of P and R values for each dataset). 

Winter 2013–2014 Program 
 The winter 2013–2014 test dataset had 653 manually-annotated bearded seal calls (Figure A-17, 
left). The bearded seal call detector/classifier had P = 0.77 and R = 0.65 for this dataset. The 
highest R was 0.96 and was obtained for grunts with SNR > 10 dB (Figure A-17, right). 
 

 
Figure A-17. Performance of the bearded seal detector/classifier on the winter 2013–2014 test dataset. 
(Left) Signal-to-noise ratio (SNR) distribution of calls in the test dataset. (Right) Recall of the 
detector/classifier per call SNR interval. 



Automated Detection and Classification of Marine Mammal Vocalizations and Anthropogenic Noise A-30 

Summer 2014 Program 
The summer 2014 test dataset had 379 manually-annotated bearded seal calls (Figure A-17, left). 
The bearded seal call detector/classifier had P = 0.84 and R = 0.58 for this dataset. The highest R 
was 0.78 and was obtained for grunts with SNR > 10 dB (Figure A-17, right). 

 
Figure A-18. Performance of the bearded seal detector/classifier on the summer 2014 test dataset. (Left) 
Signal-to-noise ratio (SNR) distribution of calls in the test dataset. (Right) Recall of the detector/classifier 
per call SNR interval. 

A.8.6. Minke whale boing calls 
The minke whale boing call detector was only run on the winter 2013–2014 data. The overwinter 
2013 test dataset had 462 manually-annotated minke whale boing call (Figure A-19, left). The 
minke whale boing call detector had P = 0.95 and R = 0.50 for this dataset. The highest R was 
0.67 and was obtained for boing calls with SNR between 5 and 10 dB (Figure A-19, right). 

 
Figure A-19. Performance of the minke whale boing call detector on the winter 2013–2014 test dataset. 
(Left) Signal-to-noise ratio (SNR) distribution of calls in the test dataset. (Right) Recall of the 
detector/classifier per call SNR interval. 
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A.8.7. Summary 
Table A-11 presents the summary of the performance of each detector/classifier used in this 
study for each season. 

Table A-11. Precision (P) and recall (R) for all SNRs of each detector/classifier. 

Detector P R 
Bowhead songs, winter 0.74 0.30 
Bowhead moans, summer 0.81 0.39 
Beluga whistles, winter 0.56 0.55 
Beluga whistles, summer 0.68 0.55 
Walrus grunts, winter 0.72 0.28 
Walrus grunts, summer 0.52 0.88 
Bearded seal, winter 0.77 0.65 
Bearded seal, summer 0.84 0.58 
Minke whale, winter 0.95 0.50 

 

A.9. Probability of Detection by Manual Analysis 

To determine whether manually reviewing only 5% of the data provided an accurate estimate of 
the acoustic occurrence of marine mammal calls, analysts randomly selected, then fully-
annotated more than 43 h of acoustic data containing a representative sample of the commonly 
detected species, specifically bowhead, beluga and gray whales, bearded and ringed seals, and 
walrus. Selected files were distributed across stations and over the whole recording period. For 
each file, an algorithm written for this purpose then chose a random start time and manually 
searched the next n% of the file (corresponding to the analysis sample) for manual annotations. n 
was varied from 1 to 100% in increments of one. This random sample selection was iterated 
2000 times per file for each sample size. A detection probability (DP) was obtained for each file 
and sample size by dividing the number of samples containing at least one annotation in the 
random sample by 2000. The comparison of detection probabilities across the sampling period 
provided an overview of seasonal and inter-specific variations. 

A.9.1. Manual Analysis Detection Probability: Winter 2011–2012 and 
Summer 2012 Programs 
Samples of data of 5% of each acoustic data file were manually analyzed to determine the 
presence of calls from each species in the winter and summer datasets. Calls were separated by 
call types (Table A-12). The goal of this analysis was to assess and validate the protocol of 
manual examination of a fraction of the datasets. The 5% manual analysis protocol is compared 
to estimated 1%, 2%, and 10% manual analysis protocols (Table A-13, Table A-14). 
For bowhead whales, analysts annotated individual sounds, but did not distinguish or 
characterize songs (see for example Delarue et al. 2009). If analysts were unable to definitively 
identify a species in a sample, they would examine the source file of the sample for more easily 
identifiable calls within the same time window. 
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Table A-12. Call types by species annotated during manual analysis of the winter 2012–2013 and 
summer 2013 datasets. Abbreviations: AM = amplitude-modulated, FM = frequency-modulated, 
HF = high-frequency, LF = low-frequency. 

Species Call type Description 
Bowhead 
whale Upsweep Upsweeping FM tonal, usually below 600 Hz. 

 Downsweep Downsweeping FM tonal, usually below 600 Hz. 

 Constant Relatively flat FM tonal, usually below 600 Hz. 

 Convex Inflected FM tonal, increasing then decreasing in frequency. Usually below 
600 Hz. 

 Concave Inflected FM tonal, decreasing then increasing in frequency. Usually below 
600 Hz. 

 Complex FM moans with more than one inflection point and/or with harmonics. Any 
FM and AM calls extending above 600 Hz. 

 Overlap Overlapping calls produced concurrently by several individuals. 

 Other Bowhead calls outside the above categories. 

Walrus Knock Broadband impulsive sounds typically occurring in long series. 
 Bell Tonal calls centered around 450 Hz and typically associated with knocks. 

 Chimp 
Two-part call reminiscent of chimpanzee vocalizations and often produced 
in long sequences. Sometimes repeated without interruption between 
consecutive units. Second part higher in frequency than first part. 

 Grunt Grunting sound. Often produced in pairs or triads repeated in long 
sequences. 

 Bark Often produced in pairs or triads repeated in long sequences. Similar to 
grunts, but higher in frequency (400 Hz). 

 Snort Snorting/burping sound typically increasing in frequency. Typically not 
produced in sequence. 

 Tone LF tonal calls, typically flat or downsweeping. Usually around 100–200 Hz. 
Similar to bowhead moans but shorter (< 0.5 s). 

 
Low-
frequency 
downsweep 

A short call (< 0.5 s) with features intermediate between a grunt and tone; 
fast downward sweep rate; less than 100 Hz and emphasis on LF (< 50 Hz) 

 Overlap Overlapping calls produced by several animals concurrently. 
 Other Walrus calls outside the above categories. 
Beluga  
whale 

Low whistle FM calls without harmonics below 2500 Hz. 
High whistle FM calls without harmonics above 2500 Hz. 

 Buzz Broadband buzzing sounds. 
 Chirp Very short, HF sound. Reminiscent of small bird chirps. 
 Click Broadband clicks, presumably echolocation related. 
 Overlap Overlapping calls produced by several animals concurrently. 
 Other Beluga calls outside the above categories. 
Bearded 
seal Long trill Downsweeping trills longer than 6 s. 

 Short trill Downsweeping trills shorter than 6 s. 

 Upsweeping 
trill  All upsweeping trills. 

 Constant 
trill Flat trills. 

 Complex trill Trills containing both up- and downsweeping segments. 
 Overlap Overlapping calls produced by several animals concurrently. 
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Species Call type Description 
 Other Bearded seal calls outside the above categories. 
Fin whale  20 Hz pulse Pulse downsweeping from 25 to 18 Hz, about 1 s long. 

 Broadband 
downsweep 

Same bottom frequency as 20 Hz pulse, but top frequency can extend up to 
50 Hz or above. 

 Other Calls that do not match the above categories. 
Gray whale Knock Knocking sounds. No frequency modulation. 

 Click Series of impulsive sounds similar to knocks but varying in pitch throughout 
the series. 

 Grunt-like 
knock Superposition of knocks and grunts. 

 Moan/growl Moans with harmonic. Very LF (fundamental near 100 Hz) with growly 
texture. Sometimes mixed with grunt-like knocks. 

 Other Calls outside the above categories. 
Humpback 
whale 

Grunt/snort, 
wop 

AM calls often ascending in frequency at the end (e.g., Thompson et al. 
1986). 

 Other Calls outside the above categories (e.g., moans, cries, etc.). 

Killer whale Pulsed call Characterized by harmonic structure. Fundamental frequency usually 
around 800–1000 Hz. Expect repetitions of stereotyped calls within files. 

 Whistle FM calls usually without harmonics. 
 Other Calls outside the above categories. 

Minke whale Boing Pulsed call with fundamental frequencies and harmonics around 1200–
1500 Hz, 1–2 s long. 

Ribbon seal Medium 
downsweep 

FM calls, sometimes with harmonic, downsweeping from 2–5 kHz to 
100 Hz, usually < 2 s. Metallic texture and sonority. 

 Other Primarily contains the puffing sounds described by Watkins and Ray (1977). 
Includes other uncategorized calls. 

Ringed seal Bark Short barking/grunting sounds below 1 kHz and produced in series; often 
alternating with yelps. 

 Yelp Short yelping sounds between 600–1000 Hz; can occur alone or in mixed 
sequences with barks. 

 Other Ringed seal calls outside the above categories. 

Unknown Undescribe
d 

Any biological sound that cannot be classified as one of the above species; 
includes isolated calls that cannot be assigned to a species based on 
context. Most presumed ice seal calls were likely logged here. 

 Grunt Any grunt-like calls not likely produced by walrus. 

 
The estimated DP for selected files that contain bowhead, beluga and gray whale, ringed and 
bearded seal, and walrus (Table A-13, Table A-14) calls indicate that the performance of the 
manual analysis protocol2 varies with species and season. 
Bowhead calls had a mean DP of 0.82 during the winter deployment (range: 0.33 to 1). DPs 
increased in late October, were highest in November, December, April, and May when bowheads 
produce long, elaborate songs (Delarue et al. 2009) as they migrate through the Chukchi Sea, and 
then decreased in late spring. The mean DP in summer 2012 was 0.55, which indicated lower 
calling rates in summer months. The high DP detected in the file recorded at the end of the 

                                                 
2 i.e., The probability that a randomly selected 2 min/90 s [winter/summer] sample will contain calls of a given 
species if calls are present within its 40 min/30 min [winter/summer] source file. 
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summer program, on 10 Oct, corresponded to the annual increase in vocal activity during fall 
associated with the onset of singing (Table A-14). 
Bearded seal calls had a mean DP of 0.62 (range 0.09 to 1) during the winter deployment. DP 
was close or equal to 1 from November to early July, with one exception at CL50 in February. 
The mean DP (0.4) during the summer 2012 deployment persisted into fall, although some peaks 
in calling activity are possible, as indicated on 11 Oct at CL05 (Table A-13, Table A-14). 
Beluga whales’ DP was variable (mean: 0.56; range: 0.14 to 1) during the winter deployment. 
The highest DPs were recorded during the spring migration. The three summer 2012 files 
analyzed each had DP close or equal to 1 (Table A-13, Table A-14). 
Ringed seals’ DP was relatively constant throughout the year and consistently low, averaging 
0.14 (Table A-13). Although not included in this analysis, summer data follow the same pattern 
(Delarue et al. 2011). This suggests the current analysis protocol underestimates the presence of 
ringed seal calls in the data (Table A-13, Table A-14). 
Walrus calls typically have a high DP due to high calling rates, with a few exceptions. The mean 
DP was 0.71 and 0.87 in the winter and summer data, respectively (Table A-13, Table A-14).  
Gray whale DP averaged 0.42 in the summer data (range: 0.13–1). A strong variability in DP, 
and therefore calling rate, was observed (Table A-14). 
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Table A-13. Manual analysis detection probabilities (DPs) of bowheads, belugas, ringed seals, bearded 
seals, and walrus for files recorded at several stations during the winter 2011–2012 program based on a 
manual review of 5% of the data. Results for each species are ordered chronologically. 1%, 2%, and 10% 
manual analysis protocols are estimates and are included here for comparison. 

Species Station Date DP (5%) DP (1%) DP (2%) DP (10%) 
Bearded seal WN60 15 Sep 2011 0.21 0.06 0.10 0.34 
 PLN40 17 Oct 2011 0.12 0.04 0.05 0.24 
 WN20 16 Nov 2011 0.09 0.02 0.05 0.14 
 PLN100 15 Dec 2011 0.94 0.61 0.74 1.00 
 PL50 15 Jan 2012 1.00 1.00 1.00 1.00 
 CL50 17 Feb 2012 0.24 0.12 0.16 0.27 
 B05 19 Mar 2012 0.99 0.76 0.92 1.00 
 W35 17 Apr 2012 1.00 1.00 1.00 1.00 
 PLN100 3 Jul 2012 1.00 1.00 1.00 1.00 
Beluga whale WN60 7 Oct 2011 0.59 0.22 0.37 0.87 
 W35 19 Oct 2011 0.30 0.06 0.13 0.40 
 PLN80 7 Nov 2011 0.51 0.16 0.27 0.73 
 CL50 23 Nov 2011 0.49 0.17 0.28 0.67 
 B05 8 Dec 2011 0.14 0.03 0.06 0.24 
 B05 15 Apr 2012 0.41 0.11 0.18 0.65 
 PLN40 1 May 2012 0.24 0.07 0.12 0.37 
 PL50 16 May 2012 1.00 0.94 0.99 1.00 
 B05 1 Jun 2012 1.00 0.86 0.98 1.00 
 B05 3 Jul 2012 0.49 0.20 0.31 0.65 
 B05 30 Jul 2012 0.98 0.58 0.76 1.00 
Bowhead whale WN80 27 Aug 2011 0.47 0.18 0.27 0.58 
 PLN100 9 Oct 2011 0.67 0.20 0.35 0.81 
 PLN40 25 Oct 2011 0.92 0.58 0.74 1.00 
 W50 4 Nov 2011 1.00 1.00 1.00 1.00 
 PL50 17 Nov 2011 1.00 1.00 1.00 1.00 
 CL50 15 Dec 2011 1.00 1.00 1.00 1.00 
 B05 15 Apr 2012 1.00 0.84 0.95 1.00 
 W35 30 Apr 2012 0.81 0.40 0.59 0.93 
 PL50 17 May 2012 0.90 0.36 0.61 1.00 
 B05 23 May 2012 0.98 0.77 0.90 1.00 
 PBN40 10 Jun 2012 0.33 0.10 0.18 0.50 
 B05 22 Jul 2012 0.75 0.24 0.40 0.96 
Ringed seal WN60 8 Oct 2011 0.25 0.07 0.12 0.51 
 W35 22 Nov 2011 0.40 0.12 0.18 0.55 
 PBN20 15 Dec 2011 0.05 0.01 0.03 0.06 
 W50 15 Jan 2012 0.15 0.03 0.07 0.31 
 PBN40 18 Feb 2012 0.01 0.01 0.01 0.01 
 WN80 18 Mar 2012 0.09 0.01 0.03 0.16 
 PL50 22 Apr 2012 0.11 0.04 0.08 0.17 
 PLN120 13 May 2012 0.08 0.02 0.03 0.09 
Walrus WN80 28 Aug 2011 0.90 0.51 0.68 1.00 
 PN120 16 Sep 2011 0.36 0.15 0.24 0.49 
 WN20 15 Oct 2011 0.98 0.72 0.84 1.00 
 WN40 1 Nov 2011 0.15 0.05 0.09 0.27 
 PLN80 3 Dec 2011 0.98 0.73 0.85 1.00 
 PLN100 24 Jun 2012 1.00 0.77 0.90 1.00 
 B05 26 Jul 2012 0.59 0.29 0.39 0.77 



Automated Detection and Classification of Marine Mammal Vocalizations and Anthropogenic Noise A-36 

Table A-14. Manual analysis detection probabilities (DPs) of bowheads, belugas, ringed seals, bearded 
seals, and walrus for files recorded at several stations during the summer 2012 program based on a 
manual review of 5% of the data. Results for each species are ordered chronologically. 1%, 2%, and 10% 
manual analysis protocols are estimates and are included here for comparison. 

Species Station Date DP (5%) DP (1%) DP (2%) DP (10%) 
Bearded seal CLN90 13 Aug 2012 0.56 0.23 0.34 0.74 
 W35 25 Aug 2012 0.02 0.01 0.02 0.02 
 B05 10 Sep 2012 0.03 0.03 0.04 0.03 
 PLN80 29 Sep 2012 0.40 0.11 0.21 0.61 
 CL05 11 Oct 2012 1.00 0.34 0.66 1.00 
Beluga whale B05 15 Aug 2012 0.97 0.38 0.69 1.00 
 B50 30 Sep 2012 1.00 1.00 1.00 1.00 
 WN40 7 Oct 2012 0.96 0.37 0.63 1.00 
Bowhead whale CLN120 13 Aug 2012 0.45 0.13 0.22 0.67 
 W20 9 Sep 2012 0.58 0.15 0.26 0.87 
 B30 20 Sep 2012 0.54 0.16 0.30 0.80 
 PLN60 30 Sep 2012 0.19 0.05 0.08 0.26 
 BG07 10 Oct 2012 0.98 0.44 0.69 1.00 
Gray whale PL50 13 Aug 2012 1.00 1.00 1.00 1.00 
 PLN40 26 Aug 2012 0.25 0.05 0.11 0.45 
 W50 7 Sep 2012 0.13 0.03 0.05 0.23 
 W20 20 Sep 2012 0.57 0.17 0.28 0.77 
 PL35 9 Oct 2012 0.15 0.03 0.06 0.28 
Walrus CLN120 10 Aug 2012 1.00 1.00 1.00 1.00 
 PLN40 25 Aug 2012 0.36 0.10 0.19 0.61 
 PL50 10 Sep 2012 1.00 1.00 1.00 1.00 
 WN40 25 Sep 2012 1.00 1.00 1.00 1.00 
 BG08 10 Oct 2012 0.98 0.34 0.64 1.00 

 
Figure A-20 suggests that a substantial increase in the length of the analysis sample would be 
required to reach 50% DP for ringed seals. Bowhead, bearded seal, and walrus DPs with a 5% 
analysis sample are all above 60% and would not significantly benefit by increasing the sample 
size. Simply doubling the sample size would raise the DP near or above 70% for all species 
except ringed seals. 
For the summer data, a doubling of the sample size would raise the detection probability of gray 
whales and bearded seals near 50%, and that of bowheads to just above 70% (Figure A-21).  
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Figure A-20. Detection probability for bowhead and beluga whales, ringed and bearded seals, and walrus 
as a function of the percent data manually analyzed for a sample of files recorded during the winter 
2011-2012 in the northeastern Chukchi Sea.  

 
Figure A-21. Detection probability for bowhead, gray, and beluga whales, bearded seals, and walrus as a 
function of the percent data manually analyzed for a sample of files recorded during the summer 2012 in 
the northeastern Chukchi Sea. 
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A.10. Vessel Noise Detection 

Ships’ propulsion system and other rotating machinery produce narrowband tones (tonals) which 
can be easily detected. The tonals detector is based on overlapped Fast Fourier Transforms 
(FFT). The number of seconds of data input to the FFT determines its spectral resolution. 
Arveson and Vendittis (2000) used both 0.5 and 0.125 Hz resolutions. For this study, spectral 
analysis was performed at 0.125 Hz resolution by using 8 s of real data with a 2 s advance. This 
frequency resolution separates the tones from each other for easy detection, and the 2 s advance 
provides suitable temporal resolution. Higher frequency resolutions can reduce detectability of 
shipping tones, which are often unstable within 1/16 Hz for long periods. A 120 s long 
spectrogram is created with 0.125 Hz frequency resolution and 2 s time resolution (524 288-point 
FFTs, 512 000 real data points, 128 000-point advance, Hamming window). A split-window 
normalizer (Struzinski and Lowe 1984) distinguishes the tonal peaks from the background (2 Hz 
window, 0.75 Hz notch, and detection threshold of 4 times the median). The peaks are joined 
with a 3 × 3 kernel to create contours. Associations in frequency are made if contours occur at 
the same time. The event time and number of tones for any event at least 20 s long and 40 Hz in 
bandwidth are recorded for further analysis. 

A.11. Seismic Survey Detection 

There are measures taken to minimize the occurrence of false alarms, especially from biological 
sources. For example, sequences with a duration standard deviation greater than 0.2+(number of 
pulses) /30 s are rejected.  
The 100% SEL is computed by adding 0.46 dB to the SEL computed over the 90% rms SPL 
window, and the pulse time, duration, 90% rms SPL, and SEL are stored for later use. The 
detected peaks are removed from the event time series and the process is repeated to look for 
weaker sequences or changes in sequence timing.  
This detector requires post-processing to handle some situations. If the pulse period is unstable 
by more than 0.25 s, the detector cannot “lock-on”. Also, if fewer than six pulses occur at the 
beginning or end of a WAV file at a particular repetition rate, they are missed. Post-processing is 
applied to address these issues and smooth the results. If at least 8 out of 20 min have seismic 
detections, then the other 12 min might have missed detecting some seismic pulses. There are 
three tests to detect possible seismic pulses: (1) The standard deviation in the number of shots 
per minute is less than 2; (2) The rms SPL during that period is stable within 3 dB and is greater 
than 125 dB; (3) The 1 min seismic SEL for the minutes with seismic pulses is within 6 dB of the 
total 1 min SEL. Seismic survey noise is declared missing for the minutes that meet these 
criteria. The missing minutes are filled in using the 1 min rms SPL and SEL from the ambient 
computations minus the mean difference between the 1 min seismic SEL and the 1 min ambient 
SEL. 

A.12. Notes on Spectrogram Processing 

This report contains many grayscale and color spectrograms representing the spectral evolution 
with time of sounds recorded during the acoustics programs in the northeastern Chukchi Sea. 



Automated Detection and Classification of Marine Mammal Vocalizations and Anthropogenic Noise A-39 

The horizontal axis of these figures is time and the vertical axis is frequency, so that the plot 
provides a visualization of time-varying frequency content of the acoustic data. The 
spectrograms were processed to exploit the spectral contrast of the signal of interest visually for 
purposes of the discussion, and therefore the displayed traces do not provide a direct measure of 
the received SPL.  
The caption of each spectrogram describes how the spectrogram was created, including: 
FFT Size 

Number of points (pts) in each fast Fourier transform (FFT). The acoustic data have a sample 
rate of 16,384 Hz (samples per second), so a 4096 pt FFT has 4 Hz resolution, and a 16,384 pt 
FFT has 1 Hz resolution. 
Frame Size 

Number of actual data points in each FFT. Often less than the FFT size. The actual data points 
are zero-padded out to the FFT size, which allows display of the spectral content at a high 
frequency-resolution while maintaining sufficient time resolution for short-duration events. Since 
many signals of interest are short duration transients, fewer real data points were used in the FFT 
window to more clearly show the rapid time evolution. 
Time step 

Number of data points overlapped from one FFT to the next. Generally half the number of real 
samples, but could be more for finer time resolution. 
Window 

Type of windowing function applied to the data before FFT to reduce spectral leakage.  
Normalization 

Most spectrograms in this report are normalized for improved display. Because normalization 
optimizes contrast in each region of the plot so that both weak and intense signals are similarly 
visible, the displayed grayscales or colors no longer represent the sound spectral pressure level, 
as they would without normalization. 
Normalization steps we applied: 
Step 1: For each frequency bin, compute the average level over the entire file. 
Step 2: For each time step, compute a moving average of the results from Step 1, with a 

frequency bandwidth of 200 Hz. 
Normalize each time-frequency bin by the average of Step 1, and the value from Step 2 that is 
300 Hz above the current frequency. 
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Appendix B. Ambient Noise Results 

B.1. Analysis Methods 

Ambient noise levels at all winter and summer recording stations were examined to document 
baseline underwater sound conditions in the Chukchi Sea.  

Ambient noise levels at each recording station are presented as: 

• Statistical distribution of sound pressure levels in each 1/3-octave-band. The boxes of the 
statistical distributions indicate the first (25%), second (50%), and third (75%) quartiles. The 
whiskers indicate the maximum and minimum range of the data. The red line indicates the 
root-mean-square (rms) in each 1/3-octave. 

• Spectral level percentiles: Histograms of each frequency bin per 1 min of data. The 5th, 25th, 
50th, 75th, and 95th percentiles are plotted. The 95th percentile curve is the frequency-
dependent level exceeded by 5% of the 1 min averages. Equivalently, 95% of the 1 min 
spectral levels are below the 95th percentile curve. 

• Broadband and approximate-decade-band sound pressure levels (SPLs) over time for these 
frequency bands: 10 Hz to 8 kHz, 10–100 Hz, 100 Hz to 1 kHz, and 1–8 kHz. 

• Spectrograms: Ambient noise at each station was analyzed by Hamming-windowed fast 
Fourier transforms (FFTs), with 1 Hz resolution and 50% window overlap. The 120 FFTs 
performed with these settings are averaged to yield 1 min average spectra. 

• Daily cumulative sound exposure levels (SEL (24 h)): computed for the total received sound 
energy, the detected seismic survey energy, and the detected shipping energy. The SEL 
(24 h) is the linear sum of the 1 min sound exposure levels (SELs). For shipping, the 1 min 
SELs (24 h) are the linear 1 min squared rms levels multiplied by the duration, 60 s. For 
seismic survey pulses, the 1 min SEL is the linear sum of the per-pulse SELs. 

The 50th percentile (median of 1 min spectral averages) can be compared to the well-known 
Wenz ambient noise curves, which show ranges of variability of ambient spectral levels as a 
function of frequency of measurements off the US Pacific coast over a range of weather, vessel 
traffic, and geologic conditions. The Wenz curve levels are generalized and are used for 
approximate comparisons only. 
The 1 min averaged, 1 Hz spectral density levels are summed over the 1/3-octave and decade 
bands to obtain 1 min averaged broadband levels (dB re 1 μPa). These values are available on 
request. Table B-1 lists the 1/3-octave-band frequencies, Table B-2 the decade-band frequencies. 
Weather and ice coverage conditions throughout the deployment periods are also provided. 
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Table B-1. Third-octave-band frequencies (Hz). 

Band Lower  
frequency 

Nominal center  
frequency 

Upper  
frequency 

1 8.9 10 11.2 
2 11.6 13 14.6 
3 14.3 16 17.9 
4 17.8 20 22.4 
5 22.3 25 28.0 
6 28.5 32 35.9 
7 35.6 40 44.9 
8 45.0 51 57.2 
9 57.0 64 71.8 
10 72.0 81 90.9 
11 90.9 102 114.4 
12 114.1 128 143.7 
13 143.4 161 180.7 
14 180.8 203 227.9 
15 228.0 256 287.4 
16 287.7 323 362.6 
17 362.7 406 455.7 
18 456.1 512 574.7 
19 574.6 645 723.9 
20 724.2 813 912.6 
21 912.3 1024 1149 
22 1,150 1,290 1,447 
23 1,448 1,625 1,824 
24 1,824 2,048 2,297 
25 2,298 2,580 2,896 
26 2,896 3,251 3,649 
27 3,649 4,096 4,597 
28 4,598 5,161 5,793 
29 5,793 6,502 7,298 
30 7,298 8,192 9,195 
31 9,195 10,321 11,585 
32 11,585 13,004 14,597 
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Table B-2. Decade-band frequencies (Hz). 

Decade-band Lower frequency Nominal center frequency Upper frequency 

2 10 50 100 
3 100 500 1,000 
4 1,000 5,000 10,000 

B.2. Winter 2013–2014 Program 

B.2.1. One-Third-Octave-Band Sound Pressure and Power Spectral 
Density Levels 

 
Figure B-1. 1/3-octave-band sound pressure levels and percentile 1 min power spectral density levels for 
winter 2013–2014 stations. (Top left) B5, (top right) W10, (bottom left) W50, and (bottom right) WN40. 
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Figure B-2. 1/3-octave-band sound pressure levels and percentile 1 min power spectral density levels for 
winter 2013–2014 stations. (Top left) PL10, (top right) PL50, and (bottom) CL5. 
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B.2.2. Broadband and Decade-Band Sound Pressure Levels and 
Spectrograms 

 
Figure B-3. Broadband and in-band sound pressure levels (SPLs) and spectrograms for winter 2013–
2014 stations. (Top left) B5, (top right) W10, (bottom left) W50, and (bottom right) WN40. 
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Figure B-4. Broadband and in-band sound pressure levels (SPLs) and spectrograms for winter 2013–
2014 stations. (Top left) PL10, (top right) PL50, and (bottom) CL5. 
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B.2.3. Daily Sound Exposure Level 

 
Figure B-5. Daily sound exposure levels (SEL 24 h) for winter 2013–2014 stations. From top to bottom: 
B5, W10, W50, and WN40. 
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Figure B-6. Daily sound exposure levels (SEL 24 h) for winter 2013–2014 stations. From top to bottom: 
PL10, PL50, and CL5. 
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B.3. Summer 2014 Program 

B.3.1. One-Third-Octave-Band Sound Pressure and Power Spectral 
Density Levels 

 
Figure B-7. 1/3-octave-band sound pressure levels and percentile 1 min power spectral density levels for 
summer 2014 stations. (Top left) W10, (top right) W30, (middle left) W50, (middle right) WN20, (bottom 
left) WN40, and (bottom right) WN80. 
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Figure B-8. 1/3-octave-band sound pressure levels and percentile 1 min power spectral density levels for 
summer 2014 stations. (Top left) BGB, (top right) BGC, (middle left) BGD, (middle right) BGE, and 
(bottom) BGF. 
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Figure B-9. 1/3-octave-band sound pressure levels and percentile 1 min power spectral density levels for 
summer 2014 stations. (Top left) PL10, (top right) PL30, (bottom left) PL50, and (bottom right) PLN20. 
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Figure B-10. 1/3-octave-band sound pressure levels and percentile 1 min power spectral density levels 
for summer 2014 stations. (Top left) KL01, (top right) PLN40, (bottom left) PLN60, and (bottom right) 
PLN80. 
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Figure B-11. 1/3-octave-band sound pressure levels and percentile 1 min power spectral density levels 
for summer 2014 stations. (Top left) CL5, (top right) CLN40, (bottom left) CLN90, and (bottom right) 
CLN120. 
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B.3.2. Broadband and Decade-Band Sound Pressure Levels and 
Spectrograms 

 
Figure B-12. Broadband and decade-band sound pressure levels (SPLs) and spectrograms for summer 
2014 stations. (Top left) W10, (top right) W30, (middle left) W50, (middle right) WN20, (bottom left) WN40, 
and (bottom right) WN80. 
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Figure B-13. Broadband and decade-band sound pressure levels (SPLs) and spectrograms for summer 
2014 stations. (Top left) BGB, (top right) BGC, (middle left) BGD, (middle right) BGE, and (bottom) BGF. 
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Figure B-14. Broadband and decade-band sound pressure levels (SPLs) and spectrograms for summer 
2014 stations. (Top left) PL10, (top right) PL30, (bottom left) PL50, and (bottom right) PLN20. 
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Figure B-15. Broadband and decade-band sound pressure levels (SPLs) and spectrograms for summer 
2014 stations. (Top left) KL01, (top right) PLN40, (bottom left) PLN60, and (bottom right) PLN80. 
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Figure B-16. Broadband and decade-band sound pressure levels (SPLs) and spectrograms for summer 
2014 stations. (Top left) CL5, (top right) CLN40, (bottom left) CLN90, and (bottom right) CLN120. 
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Figure B-17. Broadband and decade-band sound pressure levels (SPLs) and spectrograms for summer 
2014 stations. (Top left) B5, (top right) B15, and (bottom) CL50. 
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B.3.3. Daily Cumulative Sound Exposure Level 

 
Figure B-18. Daily sound exposure levels (SEL 24 h) for summer 2014 stations. From top to bottom: W10, 
W30, and W50. 
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Figure B-19. Daily sound exposure levels (SEL 24 h) for summer 2014 stations. From top to bottom: 
WN20, WN40, and WN80. 
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Figure B-20. Daily sound exposure levels (SEL 24 h) for summer 2014 stations. From top to bottom: BGB, 
BGC, BGD, BGE, and BGF. 
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Figure B-21. Daily sound exposure levels (SEL 24 h) for summer 2014 stations. From top to bottom: 
PL10, PL30, PL50, and PLN20. 
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Figure B-22. Daily sound exposure levels (SEL 24 h) for summer 2014 stations. From top to bottom: 
KL01, PLN40, PLN60, and PLN80. 
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Figure B-23. Daily sound exposure levels (SEL 24 h) for summer 2014 stations. From top to bottom: CL5, 
CLN40, CLN90, and CLN120.  

 



Ambient Noise Results B-26 

 
Figure B-24. Daily sound exposure levels (SEL 24 h) for summer 2014 stations. From top to bottom: B5, 
B15, and CL50. 

 

B.3.4. Vessel Noise Detection 

 
Figure B-25. Vessel detections each hour (vertical axis) versus date (horizontal axis) at five stations—CL5 
to CLN120B—25 Jul to 23 Oct 2014. The grey areas indicate hours of darkness. Vertical dashed lines 
indicate AMAR deployment and retrieval dates. 
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Figure B-26. Vessel detections each hour (vertical axis) versus date (horizontal axis) at eight stations—
PL10 to PLN80—25 Jul to 23 Oct 2014. The grey areas indicate hours of darkness. Vertical dashed lines 
indicate AMAR deployment and retrieval dates. 
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Appendix C. Marine Mammal Detection Results 

 
Figure C-1. Spectrogram of complex bowhead calls recorded at Station W35, 14 Nov 2012 (Frequency 
resolution: 2 Hz; Frame size: 0.128 s; Advance: 0.032 s; Hamming window). 

Table C-1. Winter 2013–2014 bowhead call detections: Dates of first and last call detections, both 
possible (i.e., record start and end) and actual, and the number of days on which a call was detected 
manually for each recording station in the northeastern Chukchi Sea. The recorders operated for 5 min 
every 30 min. 

Station Record 
start 

Fall 2013 Spring 2014 
Record 
end First 

detection 
Last 
detection 

Detection 
days 

First 
detection 

Last 
detection 

Detection 
days 

B05 11 Oct 11 Oct 12 Dec 47   0 26 Dec 
WN40 12 Oct 16 Oct 22 Nov 34   0 18 Sept 
W50 15 Oct 15 Oct 20 Dec 65 12 April 20 Sep 36 21 Sep 
W10 11 Oct 12 Oct 16 Dec 50 13 Apr 15 Jul 65 2 Aug 
PL50 19 Oct 19 Oct 28 Dec 56 4 Apr 15 Jul 43 12 Aug 
PL10 18 Oct 22 Oct 4 Nov 5   0 27 Jan 
CL05 20 Oct 31 Oct 4 Jan 54 9 Apr 18 May 27 11 Jun 
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Figure C-2. Bowhead whale call count estimates* in the Chukchi Sea from 11-31 Oct 2013 at all winter 
2013–2014 recorders. Ice data are for 23 Oct 2013. 

 
Figure C-3. Bowhead whale call count estimates* in the Chukchi Sea for November 2013 at all winter 
2013–2014 recorders. Ice data are for 15 Nov 2013. 
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Figure C-4. Bowhead whale call count estimates* in the Chukchi Sea for December 2013 at all winter 
2013–2014 recorders. Ice data are for 15 Dec 2013. 

 
Figure C-5. Bowhead whale call count estimates* in the Chukchi Sea for April 2014 at all winter 2013–
2014 recorders. Ice data are for 15 Apr 2014. 
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Figure C-6. Bowhead whale call count estimates* in the Chukchi Sea for May 2014 at all winter 2013–
2014 recorders. Ice data are for 15 May 2014. 

 
Figure C-7. Bowhead whale call count estimates* in the Chukchi Sea for June 2014 at all winter 2013–
2014 recorders. Ice data are for 15 Jun 2014. 
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Figure C-8. Summer 2014 daily bowhead call detections in the Burger study area: Daily proportion of 
sound files with call detections based on the manual analysis of 5% of the acoustic data recorded late 
July through mid-October 2014. Forty-eight sound files were recorded daily. Vertical dashed lines indicate 
recording start and end. Stations without call detections were omitted. 

Table C-2. Summer 2014 bowhead call detections: Dates of first and last call detections, both possible 
(i.e., record start and end) and actual, and the percent of days on which a call was detected for each 
recording station in the northeastern Chukchi Sea. Stations without call detections are omitted. 

Station Record start First detection Last detection Record end Detection 
days 

% Days with 
detection 

BGB 5 Aug 26 Aug 13 Oct 14 Oct 23 34.0 
BGC 5 Aug 23 Aug 15 Oct 15 Oct 28 39.5 
BGD 5 Aug 17 Aug 17 Aug 18 Aug 1 7.4 
BGE 5 Aug 26 Aug 13 Oct 14 Oct 21 30.0 
BGF 5 Aug 26 Aug 13 Oct 14 Oct 19 27.2 
B15 6 Aug 7 Aug 13 Nov 13 Nov 71 72.4 
B5 6 Aug 9 Aug 5 Nov 9 Nov 63 68.1 
WN80 2 Sep 21 Sep 12 Oct 12 Oct 20 48.8 
WN40 2 Sep 12 Sep 12 Oct 12 Oct 20 48.8 
WN20 2 Sep 9 Sep 16 Oct 16 Oct 23 52.3 
W50 2 Sep 17 Sep 16 Oct 16 Oct 22 50.1 
W30 6 Aug 17 Aug 15 Oct 15 Oct 27 38.5 
W10 3 Aug 12 Aug 15 Oct 15 Oct 19 25.8 
PLN80 21 Aug 27 Aug 9 Oct 11 Oct 17 33.5 
PLN60 5 Aug 24 Aug 13 Oct 13 Oct 26 37.7 
PLN40 4 Aug 14 Aug 12 Oct 13 Oct 27 38.8 
KL01 1 Aug 21 Sep 9 Oct 10 Oct 19 27.3 
PLN20 1 Aug 24 Aug 10 Oct 10 Oct 21 30.3 
PL50 2 Aug 22 Sep 8 Oct 9 Oct 9 13.1 
CLN120B 31 Jul 19 Aug 10 Oct 11 Oct 23 32.3 
CLN90B 31 Jul 21 Sep 10 Oct 10 Oct 19 26.7 
CLN40 31 Jul 28 Sep 8 Oct 8 Oct 6 8.6 
CL50 31 Jul 13 Oct 6 Nov 6 Nov 9 9.3 
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Figure C-9. Mean daily bowhead whale call counts (calculated as the sum of automated call detections in 
all files with manual detections divided by the number of active recording days) from 9-27 Aug at all 
summer 2014 stations in the northeastern Chukchi Sea. 

 
Figure C-10. Mean daily bowhead whale call counts (calculated as the sum of automated call detections 
in all files with manual detections divided by the number of active recording days) from 13 Sep to 10 Oct 
at all summer 2014 stations in the northeastern Chukchi Sea. 
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Table C-3. Winter 2013–2014 walrus call detections: Dates of first and last call detections, both possible 
(i.e., record start and end) and actual, and the number of days on which a call was detected manually for 
each recording station in the northeastern Chukchi Sea. The recorders operated for 5 min every 30 min. 

Station Record 
start 

Fall 2013 Spring 2014 
Record 

end First 
detection 

Last 
detection 

Detection 
days 

First 
detection 

Last 
detection 

Detection 
days 

WN40 12 Oct 16 Oct 15 Nov 3 16 Jun 18 Sep 92 18 Sep 
W50 15 Oct -- -- 0 5 Jun 20 Sep 100 21 Sep 
W10 11 Oct 22 Oct 22 Oct 1 6 Jun 31 Jul 39 2 Aug 
PL50 19 Oct 22 Oct 22 Nov 4 11 Jun 26 Jul 32 2 Aug 
PL10 18 Oct 21 Oct 24 Oct 4 -- -- 0 27 Jan 
CL05 20 Oct 21 Oct 23 Oct 3 9 Jun 9 Jun 1 11 Jun 

-- No detections 

 
Figure C-11. Winter 2013–2014 daily walrus call detections: Daily proportion of sound files with call 
detections based on the manual analysis of 5% of the acoustic data recorded October 2013 through 
September 2014 in the northeastern Chukchi Sea for each station. Forty-eight sound files were recorded 
daily. Vertical dashed lines indicate recording start and end. Stations without call detections were omitted. 
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Figure C-12. Summer 2014 daily walrus call detections in the Burger study area: Daily proportion of 
sound files with call detections based on the manual analysis of 5% of the acoustic data recorded late 
July through mid-October 2014. Forty-eight sound files were recorded daily. Vertical dashed lines indicate 
recording start and end. Stations without call detections were omitted. 
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Table C-4. Summer 2014 walrus call detections: Dates of first and last call detections, both possible (i.e., 
record start and end) and actual, and the percent of days on which a call was detected for each recording 
station in the northeastern Chukchi Sea. Stations without call detections are omitted. 

Station Record 
start 

First 
detection 

Last 
detection 

Record 
end 

Detection 
days 

% Days with 
detection 

BGB 5 Aug 6 Aug 13 Oct 14 Oct 66 94.6 
BGC 5 Aug 6 Aug 13 Oct 15 Oct 57 80.4 
BGD 5 Aug 5 Aug 18 Aug 18 Oct 7 51.5 
BGE 5 Aug 7 Aug 10 Oct 14 Oct 52 74.3 
BGF 5 Aug 5 Aug 13 Oct 14 Oct 66 94.6 
B15 6 Aug 7 Aug 2 Nov 13 Nov 20 20.4 
B5 6 Aug 11 Aug 4 Nov 9 Nov 13 13.8 
WN80 2 Sep 3 Sep 12 Oct 12 Oct 40 97.6 
WN40 2 Sep 2 Sep 11 Oct 12 Oct 40 97.6 
WN20 2 Sep 2 Sep 13 Oct 16 Oct 40 90.9 
W50 2 Sep 2 Sep 9 Oct 16 Oct 38 86.6 
W30 6 Aug 15 Aug 8 Oct 15 Oct 46 65.5 
W10 3 Aug 3 Aug 13 Oct 15 Oct 40 54.3 
PLN80 21 Aug 23 Aug 10 Oct 11 Oct 39 76.9 
PLN60 5 Aug 5 Aug 10 Oct 13 Oct 37 53.7 
PLN40 4 Aug 17 Aug 9 Oct 13 Oct 38 54.7 
KL01 1 Aug 2 Aug 8 Oct 10 Oct 21 30.2 
PLN20 1 Aug 2 Aug 8 Oct 10 Oct 40 57.6 
PL50 2 Aug 2 Aug 7 Oct 9 Oct 25 36.4 
PL30 2 Aug 2 Aug 23 Sep 9 Oct 37 54 
PL10 2 Aug 2 Aug 9 Oct 9 Oct 62 90.4 
CLN120B 31 Jul 1 Aug 10 Oct 11 Oct 51 71.6 
CLN90B 31 Jul 31 Jul 10 Oct 10 Oct 49 68.8 
CLN40 31 Jul 31 Jul 8 Oct 8 Oct 39 56 
CL50 31 Jul 31 Jul 15 Oct 6 Nov 23 23.7 
CL5 30 Jul 6 Aug 16 Oct 17 Oct 53 67.4 
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Figure C-13. Mean daily walrus call counts in the northeastern Chukchi Sea from (top left) 31 July to 16 
Aug, (top right) 17 Aug to 1 Sep, (bottom left) 2 to 20 Sep, and (bottom right) 21 Sep to 9 Oct 2014.  
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Figure C-14. Winter 2013–2014 daily beluga call detections: Daily proportion of sound files with call 
detections based on the manual analysis of 5% of the acoustic data recorded early September 2012 
through late August 2013 in the northeastern Chukchi Sea for each station. Forty-eight sound files were 
recorded daily. Vertical dashed lines indicate recording start and end. Stations without call detections 
were omitted. 

Table C-5. Winter 2013–2014 beluga whale call detections: Dates of first and last call detections, both 
possible (i.e., record start and end) and actual, and the number of days on which a call was detected 
manually for each recording station in the northeastern Chukchi Sea. The recorders operated for 5 min 
every 30 min. 

Station Record 
start 

Fall 2013 Spring 2014 
Record 
end First 

detection 
Last 
detection 

Detection 
days 

First 
detection 

Last 
detection 

Detection 
days 

B05 11 Oct 19 Oct 18 Nov 12 -- -- 0 26 Dec 
WN40 12 Oct 22 Oct 22 Oct 1 30 Apr 11 Jul 15 18 Sep 
W50 15 Oct 25 Oct 18 Nov 6 16 Apr 16 Sep 54 21 Sep 
W10 11 Oct 15 Oct 8 Dec 9 4 Apr 28 Jul 56 2 Aug 
PL50 19 Oct 24 Oct 28 Nov 5 4 Apr 11 Jul 36 2 Aug 
CL05 20 Oct 12 Nov 18 Dec 3 9 Apr 28 May 36 11 Jun 

-- No detections. 
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Figure C-15. Beluga whale call count estimates* in the Chukchi Sea for April 2013 at all winter 2012-2013 
recorders. Areas of complete ice coverage are shown in gray for 15 Apr 2013 (NOAA 2008). 

 
Figure C-16. Beluga whale call count estimates* in the Chukchi Sea for May 2013 at all winter 2012-2013 
recorders. Areas of complete ice coverage are shown in gray for 15 May 2013 (NOAA 2008). 
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Figure C-17. Beluga whale call count estimates* in the Chukchi Sea for June 2013 at all winter 2012–
2013 recorders. Areas of complete ice coverage are shown in gray for 15 Jun 2013 (NOAA 2008). The 
blue background indicates open water. 
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Table C-6. Summer 2014 beluga call detections: Dates of first and last call detections, both possible (i.e., 
record start and end) and actual, and the percent of days on which a call was detected for each recording 
station in the northeastern Chukchi Sea. Stations without call detections are omitted. 

Station Record 
start 

First 
detection 

Last 
detection 

Record 
end 

Detection 
days 

% Days with 
detection 

BGB 5 Aug 17 Aug 12 Oct 14 Oct 5 7.2 
BGC 5 Aug 9 Aug 9 Oct 15 Oct 13 18.3 
BGE 5 Aug 21 Aug 11 Oct 14 Oct 8 11.4 
BGF 5 Aug 20 Aug 9 Oct 14 Oct 6 8.6 
B15 6 Aug 7 Aug 13 Nov 13 Nov 34 34.7 
B5 6 Aug 6 Aug 8 Nov 9 Nov 46 48.9 
WN80 2 Sep 2 Oct 8 Oct 12 Oct 3 7.3 
WN40 2 Sep 6 Sep 8 Oct 12 Oct 7 17 
WN20 2 Sep 21 Sep 8 Oct 16 Oct 4 9.1 
W50 2 Sep 16 Sep 13 Oct 16 Oct 12 27.3 
W30 6 Aug 9 Aug 12 Oct 15 Oct 20 28.5 
W10 3 Aug 27 Aug 8 Oct 15 Oct 8 10.9 
PLN80 21 Aug 24 Aug 9 Oct 11 Oct 8 15.8 
PLN60 5 Aug 9 Aug 9 Oct 13 Oct 4 5.8 
PLN40 4 Aug 7 Oct 9 Oct 13 Oct 3 4.3 
KL01 1 Aug 1 Oct 9 Oct 10 Oct 5 7.2 
PLN20 1 Aug 1 Oct 8 Oct 10 Oct 6 8.6 
PL50 2 Aug 7 Oct 7 Oct 9 Oct 1 1.5 
CLN120B 31 Jul 10 Aug 10 Oct 11 Oct 14 19.7 
CLN90B 31 Jul 18 Sep 10 Oct 10 Oct 6 8.4 
CLN40 31 Jul 1 Oct 6 Oct 8 Oct 5 7.2 
CL50 31 Jul 8 Oct 31 Oct 6 Nov 3 3.1 

 

 
Figure C-18. Summer 2014 daily beluga call detections in the Burger lease area: Daily proportion of 
sound files with detections based on the manual analysis of 5% of the acoustic data recorded late July 
through mid-October 2014. Forty-eight sound files were recorded each day. Vertical dashed lines indicate 
recording start and end. Stations are ordered northeast (top) to southwest (bottom). Stations without call 
detections were omitted.  



Marine Mammal Detection Results C-15 

Table C-7. Winter 2013–2014 bearded seal call detections: Dates of first and last call detections, both 
possible (i.e., record start and end) and actual, and the number of days on which a call was detected 
manually for each recording station in the northeastern Chukchi Sea. The recorders operated for 5 min 
every 30 min. 

Station Record start First detection Last detection Record end Detection days 
B05 11 Oct 19 Oct 26 Dec 26 Dec 22 
WN40 12 Oct 16 Oct 30 Jun 18 Sep 194 
W50 15 Oct 22 Oct 8 Sep 21 Sep 226 
W10 11 Oct 12 Oct 29 Jun 2 Aug 201 
PL50 19 Oct 22 Oct 20 Jun 2 Aug 183 
PL10 18 Oct 22 Oct 27 Jan 27 Jan 43 
CL05 20 Oct 23 Oct 11 Jun 11 Jun 150 

 

 
Figure C-19. Bearded seal call count estimates* in the Chukchi Sea for November 2013 at all winter 
2013–2014 recorders.  
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Figure C-20. Bearded seal call count estimates* in the Chukchi Sea for December 2013 at all winter 
2013–2014 recorders. 
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Figure C-21. Bearded seal call count estimates* in the Chukchi Sea for January 2014 at all winter 2013–
2014 recorders.

 



Marine Mammal Detection Results C-18 

Figure C-22. Bearded seal call count estimates* in the Chukchi Sea for February 2014 at all winter 2013–
2014 recorders.

 
Figure C-23. Bearded seal call count estimates* in the Chukchi Sea for March 2014 at all winter 2013–
2014 recorders.

 
Figure C-24. Bearded seal call count estimates* in the Chukchi Sea for April 2014 at all winter 2013–
2014 recorders. 
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Figure C-25. Bearded seal call count estimates* in the Chukchi Sea for May 2014 at all winter 2013–2014 
recorders. 

 
Figure C-26. Bearded seal call count estimates* in the Chukchi Sea for June 2014 at all winter 2013–
2014 recorders. 



Marine Mammal Detection Results C-20 

 
Figure C-27. Summer 2014 daily bearded seal call detections: Daily proportion of sound files with 
detections based on the manual analysis of 5% of the acoustic data recorded late July through mid-
October 2014 in the Burger study area. Forty-eight sound files were recorded daily. Vertical dashed lines 
indicate recording start and end. Error! Reference source not found.Stations without call detections 
were omitted. 
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Table C-8. Summer 2014 bearded seal call detections: Dates of first and last call detections, both 
possible (i.e., record start and end) and actual, and the percent of days on which a call was detected for 
each recording station in the northeastern Chukchi Sea. Stations without call detections are omitted.  

Station Record 
start 

First 
detection 

Last 
detection 

Record 
end 

Detection 
days 

% Days with 
detection 

BGB 5 Aug 19 Aug 13 Oct 14 Oct 36 51.6 
BGC 5 Aug 19 Aug 10 Oct 15 Oct 42 59.2 
BGD 5 Aug 17 Aug 17 Aug 18 Aug 1 7.4 
BGE 5 Aug 19 Aug 13 Oct 14 Oct 43 61.4 
BGF 5 Aug 17 Aug 13 Oct 14 Oct 29 41.5 
B15 6 Aug 10 Aug 8 Nov 13 Nov 52 54.1 
B5 6 Aug 15 Aug 8 Nov 9 Nov 41 43.6 
WN80 2 Sep 3 Sep 9 Oct 12 Oct 11 26.8 
WN40 2 Sep 8 Sep 12 Oct 12 Oct 25 61 
WN20 2 Sep 3 Sep 12 Oct 16 Oct 29 66 
W50 2 Sep 2 Sep 15 Oct 16 Oct 32 72.9 
W30 6 Aug 8 Aug 15 Oct 15 Oct 32 45.6 
W10 3 Aug 3 Aug 15 Oct 15 Oct 38 51.6 
PLN80 21 Aug 26 Aug 10 Oct 11 Oct 20 39.4 
PLN60 5 Aug 19 Aug 12 Oct 13 Oct 31 45 
PLN40 4 Aug 17 Aug 12 Oct 13 Oct 25 36 
KL01 1 Aug 17 Aug 8 Oct 10 Oct 6 8.6 
PLN20 1 Aug 9 Aug 9 Oct 10 Oct 38 54.8 
PL50 2 Aug 14 Aug 7Oct 9 Oct 11 16.0 
PL30 2 Aug 18 Aug 6 Sep 9 Oct 4 5.8 
PL10 2 Aug 26 Sep 8 Oct 9 Oct 2 2.9 
CLN120B 31 Jul 26 Aug 9 Oct 11 Oct 16 22.5 
CLN90B 31 Jul 15 Aug 9 Oct 10 Oct 9 12.6 
CLN40 31 Jul 1 Aug 6 Oct 8 Oct 12 17.2 
CL50 31 Jul 26 Sep 3 Nov 6 Nov 16 16.5 
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Figure C-28. Mean daily bearded seal call counts in the northeastern Chukchi Sea from 15 Aug to 14 Sep 
2014 at all operational summer recording stations in the northeastern Chukchi Sea. 

 
Figure C-29. Mean daily bearded seal call counts in the northeastern Chukchi Sea from 15 Sep to 15 Oct 
2014 at all operational summer recording stations in the northeastern Chukchi Sea. 
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Table C-9. Summer 2014 gray whale call detections: Dates of first and last call detections, both possible 
(i.e., record start and end) and actual, and the percent of days on which a call was detected for each 
recording station in the northeastern Chukchi Sea. Stations without call detections are omitted. 

Station Record 
start 

First 
detection 

Last 
detection 

Record 
end 

Detection 
days 

% Days with 
detection 

B5 6 Aug 7 Aug 4 Sep 9 Nov 10 10.6 
WN40 2 Sep 6 Sep 6 Sep 12 Oct 1 2.4 
W50 2 Sep 18 Sep 18 Sep 16 Oct 1 2.3 
WN20 2 Sep 6 Sep 1 Oct 16 Oct 4 9.1 
W30 6 Aug 11 Aug 14 Oct 15 Oct 7 10 
W10 3 Aug 3 Aug 2 Oct 15 Oct 26 35.3 
BGC 5 Aug 28 Aug 16 Sep 15 Oct 8 11.1 
BGD 5 Aug 6 Aug 6 Aug 18 Aug 1 7.7 
BGE 5 Aug 6 Sep 6 Sep 14 Oct 1 1.5 
BGF 5 Aug 18 Aug 18 Aug 14 Oct 1 1.5 
PLN80 21 Aug 25 Aug 8 Sep 11 Oct 3 5.9 
PLN60 5 Aug 18 Aug 10 Oct 13 Oct 11 16 
PLN40 4 Aug 29 Aug 7 Sep 13 Oct 2 2.9 
KL01 1 Aug 17 Aug 23 Aug 10 Oct 3 4.3 
PLN20 1 Aug 18 Aug 22 Sep 10 Oct 4 5.8 
PL50 2 Aug 6 Aug 7 Oct 9 Oct 8 11.7 
PL30 2 Aug 2 Aug 5 Sep 9 Oct 2 2.9 
CLN120B 31 Jul 3 Aug 8 Sep 11 Oct 2 2.8 
CLN90B 31 Jul 5 Sep 5 Oct 10 Oct 3 4.2 
CLN40 31 Jul 6 Aug 20 Sep 8 Oct 3 4.3 
CL50 31 Jul 31 Jul 4 Sep 6 Nov 2 2.1 
CL5 30 Jul 26 Sep 26 Sep 17 Oct 1 1.3 

 

Table C-10. Summer 2014 killer whale call detections: Dates of first and last call detections, both possible 
(i.e., record start and end) and actual, and the percent of days on which a call was detected for each 
recording station in the northeastern Chukchi Sea. Stations without call detections are omitted. 

Station Record 
start 

First 
detection 

Last 
detection 

Record 
end 

Detection 
days 

% Days with 
detection 

BGB 5 Aug 15 Sep 7 Oct 14 Oct 2 2.9 
BGC 5 Aug 26 Aug 15 Sep 15 Oct 3 4.2 
BGE 5 Aug 8 Oct 8 Oct 14 Oct 1 1.4 
W30 6 Aug 19 Aug 27 Aug 15 Oct 2 2.8 
PLN60 5 Aug 19 Aug 20 Aug 13 Oct 2 2.9 
PLN40 4 Aug 20 Aug 20 Aug 13 Oct 1 1.4 
KL01 1 Aug 20 Aug 7 Oct 10 Oct 2 2.9 
PLN20 1 Aug 20 Aug 20 Aug 10 Oct 1 1.4 
PL50 2 Aug 21 Aug 7 Oct 9 Oct 2 2.9 
PL10 2 Aug 8 Oct 8 Oct 9 Oct 1 1.5 
CLN120B 31 Jul 19 Aug 19 Aug 11 Oct 1 1.4 
CLN90B 31 Jul 19 Aug 7 Oct 10 Oct 3 4.2 
CL50 31 Jul 17 Aug 8 Sep 6 Nov 2 2.1 
CL5 30 Jul 19 Aug 19 Aug  17 Oct 1 1.3 
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Table C-11. Winter 2013–2014 ringed seal call detections: Dates of first and last call detections, both 
possible (i.e., record start and end) and actual, and the percent of days on which a call was detected for 
each recording station in the northeastern Chukchi Sea. Stations without call detections are omitted. The 
recorders operated for 30–40 min every 4 h. 

Station Record start First detection Last detection Record end Detection days 
B5 11 Oct 23 Nov 23 Nov 26 Dec 1 
WN40 12 Oct 23 Dec 13 Jun 18 Sep 39 
W50 15 Oct 30 Oct 7 Jun 21 Sep 127 
W10 11 Oct 31 Oct 9 May 2 Aug 16 
PL50 19 Oct 31 Oct 13 Jun 2 Aug 125 
PL10 19 Oct 4 Nov 23 Dec 27 Jan 2 
CL05 21 Oct 6 Nov 26 May 11 Jun 95 

 

Table C-12. Summer 2014 ringed seal call detections: Dates of first and last call detections, both possible 
(i.e., record start and end) and actual, and the percent of days on which a call was detected for each 
recording station in the northeastern Chukchi Sea. Stations without call detections are omitted.  

Station Record 
start 

First 
detection 

Last 
detection 

Record 
end 

Detection 
days 

% Days with 
detection 

BGC 05 Aug 19 Aug 26 Aug 15 Oct 4 5.6 
BGF 05 Aug 07 Aug 07 Aug 14 Oct 1 1.4 
B15 06 Aug 27 Aug 13 Nov 13 Nov 13 13.3 
B5 06 Aug 18 Aug 28 Oct 09 Nov 4 4.3 
WN80 02 Sep 08 Oct 08 Oct 12 Oct 1 2.5 
W30 06 Aug 21 Aug 26 Sep 15 Oct 3 4.3 
W10 03 Aug 18 Aug 22 Sep 15 Oct 4 5.5 
PLN60 05 Aug 06 Oct 09 Oct 13 Oct 2 2.9 
PLN40 04 Aug 18 Aug 07 Oct 13 Oct 2 2.9 
KL01 01 Aug 03 Aug 06 Sep 10 Oct 4 5.7 
PLN20 01 Aug 03 Aug 22 Sep 10 Oct 8 11.4 
PL50 02 Aug 03 Aug 30 Sep 09 Oct 4 5.9 
PL30 02 Aug 18 Aug 21 Aug 09 Oct 4 5.9 
CLN120B 31 Jul 19 Aug 26 Aug 11 Oct 3 4.2 
CLN90B 31 Jul 21 Aug 21 Aug 10 Oct 1 1.4 
CLN40 31 Jul 05 Sep 28 Sep 08 Oct 2 2.9 
CL50 31 Jul 06 Aug 30 Sep 06 Nov 4 4.1 
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Appendix D. Estimating the Detection Range of Bowhead 
Moans 

This appendix describes how the detection range of bowhead moans was calculated for each 
recorder of the summer 2014 Program. 

D.1. Methods 

The received sound level (RL) of a bowhead moan at a recorder is defined by the following 
equation (Urick 1983): 
 RL = SL–TL (1)  
where SL is the source level of the bowhead moan, and TL is the transmission loss between the 
whale and the hydrophone. The detection range of a bowhead moan was assumed to be the 
distance from the recorder for which the received level of the bowhead call equaled or exceeded 
the noise level at the recorder (NL): 
 NL = RL. (2) 
Cummings and Holliday (1987) and Clark et al. (1986) estimated that source levels of simple 
moans range from ~128 to 178 dB re 1 μPa at 1 m. MacDonnell et al. (2011) estimated that 
bowhead moans recorded near the Burger lease area had source levels of 144.3 ± 4.6 dB re 1 μPa 
at 1 m (mean ± standard deviation), with minimum and maximum levels of 129.7 and 164.4 dB 
respectively (Figure D-1). These latter values were used for estimating the bowhead detection 
range at each recorder Equation 1.  

 
Figure D-1. Distribution of source levels reported by MacDonnell and Martin (2011). 
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Transmission loss values used for estimating the bowhead detection range came from a previous 
study by MacDonnell and Martin (2011) at the Burger lease area. In that study, transmission loss 
was calculated between 89 and 447 Hz using JASCO’s Marine Operations Noise Model (Hannay 
and Racca 2005, Austin 2012). This frequency range comes from using the seven 
1/3-octave-bands centered between 100 and 400 Hz. Figure D-2 shows a transmission loss map 
calculated by (MacDonnell and Martin 2011) at BG01 (summer 2009). 

 
Figure D-2. Map of the transmission loss values calculated by MacDonnell and Martin (2011) at station 
BG01 (summer 2009). x is east-west distance. y is north-south distance. 

The water depth in the eastern Chukchi Sea is nearly constant. Consequently, the transmission 
loss is nearly the same for all azimuths (Figure D-2). To simplify the calculation of the detection 
range, the transmission loss values from MacDonnell and Martin (2011) were represented by one 
equation: 
 TL(R) = A log10(R) + αR (3) 
where, R is the distance from hydrophone to whale, A is the spreading coefficient and α is the 
attenuation coefficient (Urick 1983). The coefficients A and α were defined by fitting (in the 
least square sense) Equation (3) to the average transmission loss taken in four different azimuths 
from the recorder (i.e., 0°, 90°, 180°, and 270°). Figure D-3(left) shows the transmission loss 
curve from MacDonnell et al. (2011) at the location BG01 in four different azimuths. 
Figure D-3 (right) shows the average transmission loss curve with its simplified transmission 
loss function. 
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Figure D-3. Transmission loss modeled by MacDonnell et al. (2011) at location BG01. (Left) Transmission 
loss curves in four different azimuths. (Right) Average transmission loss and its simplified transmission 
loss function. 

Coefficients A and α were calculated for each location modeled by MacDonnell et al. (2011) and 
then averaged to obtain a single set of coefficients for the whole area. Final coefficients used for 
the detection range analysis were A = 11.29 and α = 0.00057. 
Noise levels used for estimating the bowhead detection range were calculated for every minute 
of recording by summing the 1/3-octave-band levels between 89 and 447 Hz. 
The detection range was calculated at each recorder and for each minute of recording. The 
probability of detecting a bowhead moan at a given range was the number of 1 min recordings 
with a detection range equal to or greater than the given range divided by the number of 1 min 
recordings. Detection ranges were calculated independently for each recorder. 
A Monte Carlo method accounted for the measured variability in source levels. Detection ranges 
were re-calculated 50 times by randomly choosing 50 normally distributed source level values, 
with the means and standard deviations defined by MacDonnell et al. (2011; Figure D-3), 
Consequently, a distribution of probability is associated with each range. 

D.2. Results 

Figure D-4 through Figure D-30 show the detection probability of bowhead moans at each 
recorder.  
The largest 80th percentile detection ranges occurred at Stations WN80, B15, and PLN20; 
7.2 km, 6.1 km, and 5.9 km respectively. The smallest 80th percentile detection ranges occurred 
at Stations CL50, PL10, and PL30: 2.5 km, 2.6 km, and 2.7 km, respectively. 
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Figure D-4. Detection probability of bowhead moans at Station B05. The solid black line represents the 
median probability of detection. The light gray areas represent the probability range (from the 5th to the 
95th percentile), and the dark gray areas the probability interquartile range (from the 25th to the 75th 
percentile). 

 
Figure D-5. Detection probability of bowhead moans at Station B15. The solid black line represents the 
median probability of detection. The light gray areas represent the probability range (from the 5th to the 
95th percentile), and the dark gray areas the probability interquartile range (from the 25th to the 75th 
percentile). 
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Figure D-6. Detection probability of bowhead moans at Station W10. The solid black line represents the 
median probability of detection. The light gray areas represent the probability range (from the 5th to the 
95th percentile), and the dark gray areas the probability interquartile range (from the 25th to the 75th 
percentile). 

 
Figure D-7. Detection probability of bowhead moans at Station W30. The solid black line represents the 
median probability of detection. The light gray areas represent the probability range (from the 5th to the 
95th percentile), and the dark gray areas the probability interquartile range (from the 25th to the 75th 
percentile). 
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Figure D-8. Detection probability of bowhead moans at Station W50. The solid black line represents the 
median probability of detection. The light gray areas represent the probability range (from the 5th to the 
95th percentile), and the dark gray areas the probability interquartile range (from the 25th to the 75th 
percentile). 

 
Figure D-9. Detection probability of bowhead moans at Station WN20. The solid black line represents the 
median probability of detection. The light gray areas represent the probability range (from the 5th to the 
95th percentile), and the dark gray areas the probability interquartile range (from the 25th to the 75th 
percentile). 
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Figure D-10. Detection probability of bowhead moans at Station WN40. The solid black line represents 
the median probability of detection. The light gray areas represent the probability range (from the 5th to 
the 95th percentile), and the dark gray areas the probability interquartile range (from the 25th to the 75th 
percentile). 

 
Figure D-11. Detection probability of bowhead moans at Station WN60. The solid black line represents 
the median probability of detection. The light gray areas represent the probability range (from the 5th to 
the 95th percentile), and the dark gray areas the probability interquartile range (from the 25th to the 75th 
percentile). 
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Figure D-12. Detection probability of bowhead moans at Station WN80. The solid black line represents 
the median probability of detection. The light gray areas represent the probability range (from the 5th to 
the 95th percentile), and the dark gray areas the probability interquartile range (from the 25th to the 75th 
percentile). 

 
Figure D-13. Detection probability of bowhead moans at Station PL10. The solid black line represents the 
median probability of detection. The light gray areas represent the probability range (from the 5th to the 
95th percentile), and the dark gray areas the probability interquartile range (from the 25th to the 75th 
percentile). 
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Figure D-14. Detection probability of bowhead moans at Station PL30. The solid black line represents the 
median probability of detection. The light gray areas represent the probability range (from the 5th to the 
95th percentile), and the dark gray areas the probability interquartile range (from the 25th to the 75th 
percentile). 

 
Figure D-15. Detection probability of bowhead moans at Station PL50. The solid black line represents the 
median probability of detection. The light gray areas represent the probability range (from the 5th to the 
95th percentile), and the dark gray areas the probability interquartile range (from the 25th to the 75th 
percentile). 
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Figure D-16. Detection probability of bowhead moans at Station PLN20. The solid black line represents 
the median probability of detection. The light gray areas represent the probability range (from the 5th to 
the 95th percentile), and the dark gray areas the probability interquartile range (from the 25th to the 75th 
percentile). 

 
Figure D-17. Detection probability of bowhead moans at Station PLN40. The solid black line represents 
the median probability of detection. The light gray areas represent the probability range (from the 5th to 
the 95th percentile), and the dark gray areas the probability interquartile range (from the 25th to the 75th 
percentile). 
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Figure D-18. Detection probability of bowhead moans at Station PLN60. The solid black line represents 
the median probability of detection. The light gray areas represent the probability range (from the 5th to 
the 95th percentile), and the dark gray areas the probability interquartile range (from the 25th to the 75th 
percentile). 

 
Figure D-19. Detection probability of bowhead moans at Station PLN80. The solid black line represents 
the median probability of detection. The light gray areas represent the probability range (from the 5th to 
the 95th percentile), and the dark gray areas the probability interquartile range (from the 25th to the 75th 
percentile). 
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Figure D-20. Detection probability of bowhead moans at Station CL5. The solid black line represents the 
median probability of detection. The light gray areas represent the probability range (from the 5th to the 
95th percentile), and the dark gray areas the probability interquartile range (from the 25th to the 75th 
percentile). 

 
Figure D-21. Detection probability of bowhead moans at Station CL50. The solid black line represents the 
median probability of detection. The light gray areas represent the probability range (from the 5th to the 
95th percentile), and the dark gray areas the probability interquartile range (from the 25th to the 75th 
percentile). 
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Figure D-22. Detection probability of bowhead moans at Station CLN40. The solid black line represents 
the median probability of detection. The light gray areas represent the probability range (from the 5th to 
the 95th percentile), and the dark gray areas the probability interquartile range (from the 25th to the 75th 
percentile). 

 
Figure D-23. Detection probability of bowhead moans at Station CLN90B. The solid black line represents 
the median probability of detection. The light gray areas represent the probability range (from the 5th to 
the 95th percentile), and the dark gray areas the probability interquartile range (from the 25th to the 75th 
percentile). 
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Figure D-24. Detection probability of bowhead moans at Station CLN120B. The solid black line 
represents the median probability of detection. The light gray areas represent the probability range (from 
the 5th to the 95th percentile), and the dark gray areas the probability interquartile range (from the 25th to 
the 75th percentile). 

 
Figure D-25. Detection probability of bowhead moans at Station KL01. The solid black line represents the 
median probability of detection. The light gray areas represent the probability range (from the 5th to the 
95th percentile), and the dark gray areas the probability interquartile range (from the 25th to the 75th 
percentile). 
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Figure D-26. Detection probability of bowhead moans at Station BGB. The solid black line represents the 
median probability of detection. The light gray areas represent the probability range (from the 5th to the 
95th percentile), and the dark gray areas the probability interquartile range (from the 25th to the 75th 
percentile). 

 
Figure D-27. Detection probability of bowhead moans at Station BGC. The solid black line represents the 
median probability of detection. The light gray areas represent the probability range (from the 5th to the 
95th percentile), and the dark gray areas the probability interquartile range (from the 25th to the 75th 
percentile). 
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Figure D-28. Detection probability of bowhead moans at Station BGD. The solid black line represents the 
median probability of detection. The light gray areas represent the probability range (from the 5th to the 
95th percentile), and the dark gray areas the probability interquartile range (from the 25th to the 75th 
percentile). 

 
Figure D-29. Detection probability of bowhead moans at Station BGE. The solid black line represents the 
median probability of detection. The light gray areas represent the probability range (from the 5th to the 
95th percentile), and the dark gray areas the probability interquartile range (from the 25th to the 75th 
percentile). 
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Figure D-30. Detection probability of bowhead moans at Station BGF. The solid black line represents the 
median probability of detection. The light gray areas represent the probability range (from the 5th to the 
95th percentile), and the dark gray areas the probability interquartile range (from the 25th to the 75th 
percentile). 

D.3. Discussion 

The maximum detection ranges calculated in this study are consistent with maximum detection 
ranges reported in the literature. Cummings and Holliday (1985) and Clark et al. (1986) detected 
bowhead moans off Barrow up to 20 km from a hydrophone, although most of the bowhead 
moans they localized were less than 10 km away. Figure D-4 and Figure D-5 show similar 
results with a maximum detection range of approximately 20 km near Barrow. 
Figure D-31 shows the median detection probability range at all the Burger stations. The median 
detection range at BGD is shorter than at other stations because this recorder collected only 10 
days of data. 



Estimating the Detection Range of Bowhead Moans D-18 

 
Figure D-31. Comparison of the 50th percentile probability of detection range for bowhead moans at the 
Burger stations. 

Detection range estimates (median probability) calculated in summer 2014 were similar to the 
ones calculated in summer 2013 (Figure D-32).  
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Figure D-32. Comparison of 50th percentile probability of detection range for bowhead moans between 
summer 2012 through 2014 at several stations. 

Blackwell et al. (2012) reported that bowhead moans are directional; sounds are stronger in front 
of the animal than behind it. Although Equation 1 did not explicitly consider this directionality, 
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the distribution of source levels used (see Figure D-1) was obtained from bowheads at many 
different angles, which leads to a measure of average source levels and detectability. 
The transmission loss used in this study was calculated in the middle of the water column. This 
was not optimal because bowheads vocalize at different depths through the water column and 
transmission loss varies with depth. Although, because the eastern Chukchi Sea is very shallow 
(~50 m), the variation of received levels due to the variations of source depth is not likely to 
greatly affect the detection range results. 



Interpolation Techniques E-1 

Appendix E. Interpolation Techniques 

There are two main groupings of interpolation techniques used to create surfaces maps from 
measured points: 

• Deterministic: Based on either the extent of similarity or the degree of smoothing of the 
measured points.  

• Geostatistical: Uses the statistical properties of the measured points.  
Radial basis function is a deterministic interpolation technique that creates a surface from 
measured points, based on the degree of smoothing. It calculates predictions from the measured 
points based on the assumption that the interpolating surfaces should be influenced by a function 
of their radial distance from a grid point and that the surface must pass through each measured 
sample value.  
There are five different basis functions: 

• Thin-plate spline 

• Spline with tension 

• Completely regularized spline 

• Multiquadric function 

• Inverse multiquadric function 
Each basis function has a different shape and results in a different interpolation surface. Each of 
the functions has a parameter that controls surface smoothness through a series of elevation 
samples. Its default value is equal to the average point spacing, assuming the samples are 
uniformly distributed. The radial basis function used was the inverse multiquadric, given by the 
equation: 

 𝐵𝐵(ℎ) =  1
√ℎ2+𝑅𝑅2

 (1) 

where h is the anisotropically scaled distance from the interpolant to the node and R2 is the 
kernel parameter that controls surface smoothness. Smoother maps are generated from lower 
parameter values. 
Ordinary Kriging is a geostatistical interpolation technique that relies on both statistical and 
mathematical methods to create surfaces and assess the uncertainty of the predictions. Ordinary 
Kriging assumes the model:  

 𝑍𝑍(𝑠𝑠) =  µ + 𝜀𝜀(𝑠𝑠) (2) 
where µ is an unknown constant and ε represents errors associated with µ. Ordinary Kriging 

requires the form and parameter values of the spatial dependence of the spatial process in terms 
of a semivariogram model. In spatial statistics the theoretical semivariogram is a function (e.g., 
linear, exponential, Gaussian, and spherical) describing the degree of spatial dependence of a 

spatial random field or stochastic process. Typically the semivariogram model is not known in 
advance, and therefore must be estimated, either visually or by an estimation method. The 
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appropriate model must fit the empirical values by matching the shape of the curve of the 
experimental variogram to the shape of the curve of the mathematical function.  

The main steps in creating a geostatistical model are: 
1. Examine the data.  
2. Calculate the experimental semivariogram. 
3. Fit a theoretical model. 
4. Generate the matrices of Kriging equations.  
5. Solve the matrices to obtain a predicted value and its associated error for each location in 

the output surface. 
Surface map plots were generated with IDL programming software version 8.2.0, MATLAB 
version 8.1.0, and ArcGIS version 10.1.  
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Appendix F. Localization Techniques 

F.1. Source Localization 

The timespan extracted from each call recording on three synchronized recorders was centered 
on the detection time, and extended before and after the detection by the maximum sound 
propagation time between recorders. A 3 × 3 matrix of TDOAs was created based on cross-
correlations between each pair or recorders. Each row in the matrix represented the computed 
TDOAs between one recorder and the two others. Diagonal values were set to zero because they 
correspond to a recording’s delay relative to itself. The strength of each matrix row was scored 
by summing the magnitude of its three strongest correlations. TDOAs from the row with the 
highest score were used to calculate the localization using its three strongest correlations. Some 
cross-correlations were weak because the signal to noise ratio (SNR) was too low or a bowhead 
vocalization was not recorded by enough recorders. In some cases, no localization solution could 
be found for a detection group and that group was discarded. 

The linear equation approach describes the algebraic relation between the TDOA and the 
locations of the source and the receivers. Defining one of the receivers as the origin, the source 
location(s) from a three-receiver array is obtained as:  

 
1
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where c is sound velocity, δ is the TDOA vector, [ ]T1312 ,δδδ = , b is given by 
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Solving for τ1:  
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Substituting Equation  2 into Equation 1, the source location s is obtained. Two positive 
solutions correspond to two possible source positions. Negative and complex solutions are 
discarded, as they have no physical solution or meaning (Wahlbergh et al. 2001, Vallarta 2009).  
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