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Localizing Sources Using a Network of
Synchronized Compact Arrays

Ildar R. Urazghildiiev and David E. Hannay

Abstract—The problem of passive acoustic estimating the po-
sition of a source using a network of synchronized underwater
compact arrays is considered. Maximum-likelihood estimators us-
ing angle of arrival (AOA), time difference of arrival (TDOA), as
well as a combination of AOA/TDOA estimates are developed. The
localization accuracy provided by the AOA-based, TDOA-based,
and hybrid estimators is evaluated using Cramér–Rao bounds,
statistical simulations, and in situ test. Test results demonstrated
that the efficiency of AOA-based and TDOA-based estimators
strongly depends on variances of the AOA and TDOA estimates.
Relative efficiency of the hybrid estimator is higher than any of the
AOA-based and TDOA-based algorithms.

Index Terms—Compact array, hybrid estimator, maximum-
likelihood (ML) estimator, source localization.

I. INTRODUCTION

THE problem of long-term passive acoustic monitoring
(PAM) of large ocean areas and localizing vocalizing ma-

rine animals, vessels, and other sources is important for many
applications. A common approach for solving this problem is
based on using large-aperture arrays of fixed synchronized omni-
directional acoustic sensors (hydrophones) [1]–[11]. Positioning
through omnidirectional sensors is only based on time difference
of arrival (TDOA) of a signal detected on multiple sensors
such that PAM systems employing omnidirectional sensors use
various TDOA-based localization algorithms. The problem of
passive source localization can also be solved using arrays of
directional vector sensors [12]–[14]. Although this approach
may provide some benefits as compared to omnidirectional
sensors, arrays with vector sensors are not considered in this
work.

Recent advances in sensor design have resulted in compact
arrays of synchronized omnidirectional hydrophones. Such ar-
rays can measure the azimuth and elevation angles of detected
signals [15]–[25]. Despite the technical complexity of compact
arrays, they are becoming more widespread in underwater PAM.
A network of two or more underwater compact arrays can ensure
unambiguous localization of surface vessels [15]–[17], [23],
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marine animals [18]–[22], and other sound producing sources
[3], [24] within large marine areas. If compact arrays are asyn-
chronous in the sense that the accurate TDOA of signals detected
at different arrays is not possible, only the AOA measurements
can be used to estimate the positions of the sources.

The next step forward in PAM system design can be the
networks of synchronized compact arrays. In such networks,
all sensors used for recording acoustic fields are synchronized.
Design and deployment of networks of synchronized compact
arrays is an even more complicated technical problem, but such
networks can provide several important benefits. One benefit is
the ability to combine both TDOA and AOA estimates computed
for each detected signal to estimate source position.

The issue of passive multisensor localization of sources using
AOA-based, TDOA-based, and hybrid techniques was exten-
sively studied during last decades (see, e.g., [26]–[32] and refer-
ences therein). The techniques considered in these works were
designed mostly for radio signals observed in wireless communi-
cation systems and other similar applications. According to these
works, both AOA-based and TDOA-based localization tech-
niques require maximization of nonlinear functions such that the
main goal of these works was to find certain algebraic solutions
to this problem by constructing pseudolinear overdetermined
system of equations. The algorithms based on linearizing the
equation using Taylor-series expansion [26] and various least
squares (LS) techniques [27]–[29], [32] were proposed. These
localization algorithms were able to decrease computational
complexity, which is important for wireless communication
systems. However, for most underwater PAM systems, the basic
criterion of efficiency is localization accuracy. This means that
accurate rather than fast localization techniques are of higher
practical importance.

The TDOA-based localization techniques applicable to un-
derwater PAM systems were studied in many works (see, e.g.,
[9]–[11], [33]–[35], and references therein). Comparative anal-
ysis of several TDOA-based algorithms was performed in [11],
and it was reported that the maximum-likelihood (ML) estimator
outperformed the hyperbolic fixing and some other suboptimal
algorithms. The ML AOA-based localization algorithm applica-
ble to the networks of asynchronous underwater compact arrays
was considered in [23]. However, the AOA-based, TDOA-based,
and hybrid algorithms applicable to underwater PAM have not
been compared in the known literature. It is unclear under
which conditions networks of underwater compact arrays can
outperform large-aperture arrays of omnidirectional sensors in
terms of localization accuracy.
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This study focuses on the problem of estimating the position
of a sound source using a network of underwater stationary
synchronized compact arrays. The goals of this work are to de-
velop the hybrid ML position estimator combining the AOA and
TDOA measurements provided by compact arrays; to derive the
closed-form representations for the Cramér–Rao bounds (CRB);
and to compare the position estimation accuracy provided by
the AOA-based, TDOA-based, and hybrid estimators. The main
contribution of this work is the closed-form representations for
the hybrid ML estimator, for the CRB, as well as the results of
statistical simulations and in situ tests comparing the estimation
accuracy of three estimators. The intended applications of the
proposed technique include, but are not limited to, passive acous-
tic detection, localization, and tracking of marine animals and
vessels, and estimation of population densities and abundances.
Section II considers a data model and problem formulation.
Section III presents the closed-form representations for the ML
estimators. Section IV derives representations for the CRB.
Section V presents the results of simulations and in situ tests,
and Section VI provides discussions and conclusions.

II. DATA MODEL AND PROBLEM FORMULATION

It is assumed that a network ofN ≥ 2 stationary synchronized
compact arrays is used to localize a source. Each compact array
consists of M ≥ 3 synchronized sensors (hydrophones) such
that a total of NM synchronized sensors are available. The
size of arrays specified as the maximum distance between sen-
sors comprising arrays is d = dn = maxp,q=1...M ‖rpn − rqn‖,
where rpn is the coordinate of the pth sensor of the nth compact
array. We assume that the size of arrays is much shorter than the
minimum distance between array centers

d � D = min
i�=j

‖ri − rj‖ (1)

where ri = [xi, yi]
T ∈ R2 is the position of the center of the

ith compact array. For example, two or more compact arrays
with the size d = 1.85 m placed at the distance D = 43 m from
each other [23] satisfy this condition. The size d is also much
smaller than the maximum possible distance between the source
and the centers of the arrays, d � R = max

n=1,...,N
‖r − rn‖.

Under these conditions, sufficiently accurate measurement of the
array-to-source distance is not possible for all compact arrays.
With M ≥ 3 sensors not located on a line, each compact array
can provide the measurements of two bearings: the azimuth αn

and the elevation angle βn of the source. However, in many
PAM applications, the source depth is not a parameter of interest
such that localization is performed in horizontal plane. Beside
this, the accuracy of elevation measurements may be insufficient
in shallow water due to surface and bottom reflections [17].
Therefore, without loss of generality, only azimuth is considered
as the AOA in this work. The array and source positions are
represented in a 2-D Cartesian coordinate system with the origin
O, axis OX, and axis OY placed on a horizontal surface. The
azimuth αn of a source is defined in a rectangular coordinate
system associated with the nth array. It is measured relative to
the axis OY and obtained by transferring the original coordinate

system into the point rn such that

αn (r) = tan−1x− xn

y − yn
. (2)

In practice, the positions of compact arrays are measured
with some degree of accuracy and may change due to currents
and other unpredictable factors. The errors of estimation of the
compact array positions may affect the localization accuracy.
However, this issue is not considered in this work. We assume
that errors in estimating array positions are negligibly small
compared to array-to-source distances.

In the general case, multiple moving sources producing var-
ious types of sounds, such as vocalizing marine animals and
ships, can present within the detection range of compact arrays.
The choice of appropriate signal model and corresponding lo-
calization technique depends on available data and the goals
of investigations. In this work, we assume that signals from
different sources do not overlap in time or frequency domain
and can be detected separately such that a multisignal situation
does not occur. Examples of such signals include impulsive
sounds produced by marine animals and ship noise observed
in the absence of sounds from other sources.

Prior information about source motion, if available, could
potentially be used to enhance source localization. However,
the scope of this investigation is limited by localization of
sources at the initial stage of spatio-temporal processing when
prior information about source motion is not available. We also
assume that all motion effects, such as the Doppler shift in the
signal frequencies, only affect the AOA and TDOA estimation
errors at individual arrays. These effects are not considered
here. The position of a source producing the detected signal
is described by the vector

r =

[
x
y

]
= r

[
sinα
cosα

]
∈ R2 (3)

where r = |r‖ is a distance to the source, symbol ‖·‖ denotes
the vector norm, and α is the source azimuth measured relative
to axis OY.

For each signal detected by a compact array, its AOA is
estimated. In practice, various AOA estimation techniques are
applicable to compact arrays. The examples of TDOA-based
estimators of azimuths (2) are given in [15]–[20] and [25]. The
wideband beamformer and the ML estimators are considered in
[36]–[39]. The AOA estimation algorithms used in each individ-
ual compact array are not considered in this work. The azimuth
estimates obtained by N compact arrays can be represented as

α̂n = αn (r) + εn, n = 1, . . . , N (4)

where εn is the AOA estimation error observed in the nth array.
Because all sensors of the network are synchronized, the

TDOA between any ith and jth compact array, i.e., τ̂i,j , can also
be measured. In principle, the TDOA estimate can be obtained
using any two sensors rpi and rqj belonging to the ith and jth
compact arrays. However, if the assumption (1) holds, TDOA
between the array sensors are much smaller than TDOA between
the array centers such that TDOA between sensors have very
little effect on localization accuracy. Therefore, TDOA estimates
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between the centers of compact arrays are used in this work. The
TDOA estimates can be represented as

τ̂i,j = τi,j (r) + ξi,j ,

i = 1, . . . , N − 1, j = i+ 1, . . . , N (5)

where

τi,j (r) =
(‖r − ri‖ − ‖r − rj‖)

c
(6)

is the true TDOA between the centers of the ith and jth compact
arrays, ξi,j is the TDOA estimation error, and c is the speed of
sound.

As it was shown in [40], the instances of ambient noise at fre-
quency f are almost uncorrelated at distances r > (2, . . . , 3)λ,
where λ = c/f is the wavelength. This means that if the mini-
mum distance between array centers (1) satisfy the condition

D � λmax = c/fmin (7)

ambient noise observed at the outputs of arrays is uncorrelated.
Here, λmax is the maximum wavelength corresponding to the
minimum frequency of detected signals, fmin. In this case,
we can assume that AOA and TDOA estimation errors on
array outputs are also uncorrelated, i.e., E{εiεj} = σ2

α δi,jand
E {ξkξl} = σ2

τ δk,l. Here and everywhere, symbol E{ · } de-
notes statistical averaging; σ2

α and σ2
τ are variances of AOA

and TDOA estimation errors, respectively; δi,j is the Kronecker
delta; and ξk is the TDOA estimation error ordered in a certain
way.

The statistical distributions of AOA and TDOA estimation
errors are unknown in practice. They depend on many unpre-
dictable factors, such as the sound propagation environment,
the presence of bottom and surface reflections, technical char-
acteristics and deployment of the array, network geometry, the
AOA and TDOA estimation algorithms used, signal-to-noise
ratio (SNR), and others. Considering the influence of all these
factors on the statistical properties of the AOA and TDOA
estimation errors and design localization technique minimizing
localization error in all possible scenarios is impossible. In this
work, we make a standard assumption that the measurement
errors εn and ξi,j are independent identically distributed (i.i.d.)
Gaussian variables with zero mean and known variances σ2

α and
σ2
τ , respectively. This assumption is supported by the central

limit theorem stating that when multiple independent random
variables are added, their sum tends toward a normal distribution.
Thus, the techniques considered in this work are suboptimal un-
less the measurement errors are normally distributed. The ways
of empirical estimating the variances σ2

α and σ2
τ are considered

in Section III.
The efficiency of any estimator can be characterized by the

mean square error (MSE) of the estimates x̂ and ŷ of the
source position (3), i.e., σ2 = E{(x̂− x)2 + (ŷ − y)2}. Note
that MSE coincides with the variance for unbiased estimates.
In this article, AOA-based, TDOA-based, and hybrid estimators
are compared in terms of relative efficiency specified by the
ratio of the MSE they provide. The problems considered here
are formulated as follows:

1) to obtain the closed-form representations for the hybrid
ML estimator of the vector r (3) using both AOA estimates
(4) and TDOA estimates (5);

2) to derive the closed-form representations for the CRB
approximating estimation errors;

3) to compare the AOA-based, TDOA-based, and hybrid
ML estimators using relative efficiencies σ2

A/σ
2
T and

min{σ2
A, σ

2
T }/σ2

H , where σ2
A, σ2

T , and σ2
H are empirical

MSE of the position estimates provided by AOA-based,
TDOA-based, and hybrid ML estimators, respectively.
The empirical MSE are obtained using statistical simu-
lations and in situ test.

III. ML ESTIMATORS

Azimuth estimates (4) obtained for a signal detected by N
compact arrays can be represented as a random vector

α̂ = α (r) + ε ∈ RN (8)

whereα (r) = α = [α1, . . . , αN ] T ∈ RN is the vector of true
azimuths and ε = [ε1, . . . , εN ]T ∈ RN is the vector of AOA
estimation errors. The mean value and the covariance matrix of
vector (8) are

E {α̂} = α,Cα = E
{
(α̂−α) (α̂−α)T

}
∈ RN×N . (9)

If condition (7) holds, the covariance matrix of vector (8) is
diagonal

Cα =

⎡
⎢⎣
σ2
α1 0 0

0
. . . 0

0 0 σ2
αN

⎤
⎥⎦ ∈ RN×N . (10)

whereσ2
αn is the variance of the AOA estimation errors provided

by the nth array. The logarithmic likelihood function of vector
α̂ is

lnW (α̂|r) = k − 1

2
(α̂−α)TC−1

α (α̂−α) (11)

where k is a scalar that does not depend on r. From (11), the
AOA-based ML estimate of vector r is [23]

r̂α = [x̂α, ŷα]
T = argmax

x,y
lnW (α̂|r) . (12)

The TDOA estimates (5) of the detected signal can also be
presented in vector form as

τ̂ = τ (r) + ξ ∈ RK (13)

where τ (r) = τ = [τ1, . . . , τK ]T ∈ RK is vector consisting
of true TDOA estimates, τi,j , ordered in a certain way; σ =
[ξ1, . . . , ξK ]T ∈ RK is vector of TDOA estimation errors; and
K = N(N − 1)/2. The mean value and the covariance matrix
of vector τ̂ are

E {τ̂} = τ , Cτ = E
{
(τ̂ − τ ) (τ̂ − τ )T

}
∈ RK×K .

(14)
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If condition (7) holds, the covariance matrix of vector (13) is
also diagonal

Cτ =

⎡
⎢⎣
σ2
τ1 0 0

0
. . . 0

0 0 σ2
τK

⎤
⎥⎦ ∈ RK×K . (15)

The logarithmic likelihood function of vector τ̂ is

lnW (τ̂ |r) = k − 1

2
(τ̂ − τ )TC−1

τ (τ̂ − τ ) . (16)

The TDOA-based ML estimate of vector r can be represented
as [11]

r̂τ = [x̂τ , ŷτ ]
T = argmax

x,y
lnW (τ̂ |r) . (17)

Let γ̂ = [α̂T , τ̂T ]T ∈ RNK denote the NK-dimensional
vector consisting of AOA and TDOA estimates. The logarithmic
likelihood function of vector γ̂ is

lnW (γ̂|r) = k − 1

2
(γ̂ − γ)TC−1

γ (γ̂ − γ) . (18)

where

Cγ =

[
Cα, Cατ

Cατ , Cτ

]
∈ RNK×NK (19)

is the covariance matrix of γ̂; and Cατ ∈ RN×K is the matrix
specifying correlation between vectors α̂ and τ̂ . Then, the
hybrid ML estimator using both AOA and TDOA measurements
provided by the network can be represented as

r̂h = [x̂h, ŷh]
T = argmax

x,y
lnW (γ̂|r) . (20)

Because AOA and TDOA estimates of the signal are obtained
using different algorithms, α̂ and τ̂ can be considered as inde-
pendent random vectors such that Cατ = 0. In this case, the
joint likelihood function of vectors α̂ and τ̂ can be represented
as

lnW (γ̂|r) = lnW (α̂, τ̂ |r) = lnW (α̂|r) + lnW (τ̂ |r) .
(21)

Then, the hybrid ML estimator takes the form

r̂h = [x̂h, ŷh]
T = argmax

x,y
{lnW (α̂|r) + lnW (τ̂ |r)} .

(22)
If conditions (10) and (15) hold, and all arrays provide the

same variances of AOA estimation errors, σ2
αn = σ2

α , n =
1, . . . , N , and TDOA estimation errors, σ2

τk = σ2
τ , k =

1, . . . ,K, then the joint likelihood function (21) reduces to the
following representation:

lnW (α̂, τ̂ |r) = k

−
[(

2σ2
α

)−1
N∑

n = 1

(α̂n − αn)
2 +

(
2σ2

τ

)−1
K∑

k = 1

(τ̂k − τk)
2

]
.

(23)

In this case, the hybrid ML position estimate minimizes the
criterion function Ψ(α̂, τ̂ |r)

r̂h = argmin
x,y

Ψ(α̂, τ̂ |r) (24)

where

Ψ(α̂, τ̂ |r)

=
(
2σ2

α

)−1
N∑

n = 1

(α̂n − αn)
2 +

(
2σ2

τ

)−1
K∑

k = 1

(τ̂k − τk)
2.

(25)

Representations (22) and (25) show that implementing the
hybrid estimator requires knowledge of the variances of AOA
and TDOA estimates, σ2

α and σ2
τ , associated with each detected

signal and playing a role of weighting factors. In practice,
these variances are unknown and should be replaced by certain
estimates computed empirically.

In general, it is difficult to estimate the variance of AOA
and TDOA estimates for each detected signal. Therefore, some
average values of σ2

α and σ2
τ obtained for a set of similar signals

can be used in (25). Some estimate of the variance σ2
τ can

also be obtained for each detected signal using available TDOA
estimates. Let τ̂p,qi,j be the TDOA estimate obtained using the pth
sensor of the ith array with coordinates rpi , and the qth sensor of
the jth array with coordinates rqj . If each array has M sensors,
then a total of M2 TDOA estimates can be obtained for each
pair of arrays. The estimate of the variance σ2

τk for the kth pair
of arrays is

σ̂2
τk = M−2

∑
p

∑
q

(
τ̂p,qi,j − τ̄i,j

)2
(26)

where

τ̄i,j = M−2
∑
p

∑
q

τ̂p,qi,j (27)

is the average TDOA between the ith and jth arrays. The
estimates (26) should be substituted in (14) to find the hybrid
ML position estimates (22). If all pairs of arrays provide approx-
imately the same variance of TDOA estimates, then (26) can be
averaged over all pairs, and the average estimate

σ̂2
τ = K−1

K∑
k = 1

σ̂2
τk (28)

can be used in (25) to find the hybrid estimates (24).
Note that the TDOA-based 2-D position estimate (17) is

unambiguous if the network contains N ≥ 3 compact arrays.
If N = 2, the TDOA estimate (5) corresponds to an infinite
number of points located on a hyperbola such that r̂τ becomes
unobservable from τ̂ . However, the hybrid position estimates
(22) and (24) are observable even if N = 2. The networks with
two separated and synchronized compact arrays are important
in practice because they are easier to implement as compared
to networks with N ≥ 3 arrays, but these networks have some
specific properties.

Without loss of generality, we can assume that N = 2 arrays
are placed on the axis OX, and the y coordinate of the source
is positive, y > 0. In this case, the position of a source is at the
intersection of two straight lines, y(n)α (x), n = 1, 2, which are
specified by the equations

y(n)α (x) = kn (x− xn) (29)
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Fig. 1. Functions y
(1)
α (x), y(2)

α (x), and yτ (x) computed for the actual
AOA and TDOA values (solid lines), small AOA and TDOA measurement errors
(dashed lines), and large errors (dash-dotted lines). The symbols “◦” show the
source positions, and the symbols “Δ” display the positions of the arrays.

where kn = cosαn/ sinαn is the coefficient determining the
slope of the nth line, and xn is the x coordinate of the nth array.

The ML AOA estimate (12) can be found directly from (29)
by substituting the AOA estimates (8) in (29)

x̂α =
k̂1x1 − k̂2x2

k̂1 − k̂2
, ŷα = k̂1(x̂α − x1) = k̂2 (x̂α − x2)

(30)
where k̂n = cos α̂n/ sin α̂n .

The infinity set of TDOA-based ML position estimates (17)
is specified by the hyperbolae

yτ (x) =
b
√
x2 − a2

a
(31)

where a = τ̂ c; τ̂ is the TDOA estimate (13); b =√
(D/2)2 − (a/2)2 ; D is the distance between two arrays; and

c is the speed of sound. The hyperbolae (31) has an asymptote
with the slope

ατ = tan−1 b

a
.

If x1 < x2 and y > 0, then the following condition holds for the
azimuths:

α1 > ατ > α2. (32)

If AOA and TDOA estimates are free from errors, i.e., τ̂ = τ
and α̂1,2 = α1,2 , then y

(1)
α (x), y(2)α (x), and yτ (x) intersect in

a source position r (see Fig. 1, solid lines). In the presence of
AOA and TDOA measurement errors, various situations may
occur. If the measurement errors are small and condition (32)
holds for the azimuth estimates, α̂1 > α̂τ > α̂2, the straight
lines y

(1)
α (x) and y

(2)
α and the hyperbolae yτ (x) intersect near

the source positions (see Fig. 1, dashed lines). In this case,
the maximum of the criterion function Ψ(α̂, τ̂ |r) exists and
the hybrid estimator (25) produces regular localization error.

If condition (32) does not hold because α̂1 ≤ α̂2, α̂τ < α̂2, or
α̂τ > α̂1, then the straight lines y(1)α (x) and y

(2)
α do not intersect

for y > 0 (see Fig. 1, dash-dotted lines). In this situation, the
maximum of Ψ(α̂, τ̂ |r) either does not exist or is located at a
very long distance from the source, and the hybrid estimator (25)
produces abnormal error (outlier). As a result, in the caseN = 2
arrays, both the AOA-based and hybrid estimators should also
be characterized by the probability of occurring outliers. The
AOA-based and hybrid estimates should be accepted if condition
(32) holds and rejected otherwise.

IV. CRAMÉR–RAO BOUNDS (CRB)

The CRB specify the lowest variance that any unbiased linear
estimator can achieve [38], [41]. We derive the closed-form
representations specifying the CRB of the ML hybrid position
estimate (24) under the assumption of uncorrelated vectors α̂
and τ̂ .

The CRB of the hybrid estimates of 2-D vector r (3) can be
represented in the form [37], [38], [41]

CRB (r) = F (r)−1 =

[
CRBxx

h CRBxy
h

CRByx
h CRByy

h

]
∈ R2×2 (33)

where

F (r) = E

[(
∂lnW (α̂, τ̂ |r)

∂r

)T (
∂lnW (α̂, τ̂ |r)

∂r

)]

= − E

[
∂2lnW (α̂, τ̂ |r)

∂r∂rT

]
∈ R2×2 (34)

is the Fisher information matrix (FIM). Taking into account (21),
the FIM can be represented as a sum of two terms

F (r) = F α (r) + F τ (r) (35)

where

F α (r) =

[
F xx
α F xy

α

F yx
α F yy

α

]
and F τ (r) =

[
F xx
τ F xy

τ

F yx
τ F yy

τ

]
(36)

are FIMs corresponding to AOA-based (11) and TDOA-based
(16) likelihood functions, respectively. Performing statistical
averaging of the likelihood function (11), the elements of FIM
F α(r) can be represented as

F xx
α = ∇xT

α C−1
α ∇x

α

F xy
α = F yx

α = ∇xT
α C−1

α ∇y
α

F yy
α = ∇yT

α C−1
α ∇y

α (37)

where

∇x
α =

∂α (r)

∂x
∈ RN , ∇y

α =
∂α (r)

∂y
∈ RN (38)

are vectors of partial derivatives of the azimuths over the coor-
dinates x and y, respectively. Partial derivatives of the azimuths
(38) are

∂αn

∂x
=

y − yn
d2n

(39a)
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∂αn

∂y
= − x− xn

d2n
(39b)

where d2n = (x− xn)
2 + (y − yn)

2. Partial derivatives (38) in
polar coordinates are given in [23].

The elements of FIM F τ (r) can be obtained by performing
statistical averaging of the likelihood function (16)

F xx
τ = ∇xT

τ C−1
τ ∇x

τ

F xy
τ = F yx

τ = ∇xT
τ C−1

τ ∇y
τ

F yy
τ = ∇yT

τ C−1
τ ∇y

τ (40)

where

∇x
τ =

∂τ (r)

∂x
∈ RK (41)

∇y
τ =

∂τ (r)

∂y
∈ RK

are vectors of partial derivatives of TDOAs over the coordinates
x and y, respectively. Partial derivatives of TDOA τi,j(r) are

∂τi,j (r)

∂x
=

1

c

(
x− xi

‖r − ri‖ − x− xj

‖r − rj‖
)

(42a)

∂τi,j (r)

∂y
=

1

c

(
y − yi

‖r − ri‖ − y − yj
‖r − rj‖

)
. (42b)

Substituting (37)–(42) in (35) gives closed-form representa-
tions for the FIM F (r). Corresponding representation in polar
coordinates can be obtained similarly by computing partial
derivatives (39) and (42) over the parameters {r, α }.

If the hybrid position estimates are unbiased, the lower bound
on their variance and MSE is

σ2
H = E

{
(x̂h − x)2 + (ŷh − y)2

}
≥ CRBh (43)

where CRBh = CRBxx
h + CRByy

h . Because the FIMs F α(r)
and F τ (r) are positive definite, determinant of F (r) has the
property

det(F (r)) ≥ det(F α(r)) + det(F τ (r)).

Hence

det (CRB(r))

= det(F (r))−1 ≤ (det(F α(r)) + det(F τ (r)))
−1

and the following property holds:

CRBh ≤ min [CRBα, CRBτ ] (44)

where CRBα = CRBxx
α + CRByy

α and CRBτ = CRBxx
τ +

CRByy
τ . This property implies that CRB of the hybrid ML

estimator (22) is not higher than the CRB provided by any of
the AOA-based (12) or TDOA-based (17) estimators separately,
and relative efficiency in terms of CRB is

min [CRBα, CRBτ ]

CRBh
≥ 1. (45)

Because the FIMs F α(r) and F τ (r) depend on the co-
variance matrices Cαand Cτ , relative efficiency of the AOA-
based and TDOA-based estimators can be any positive value,

0 < CRBα/CRBτ < ∞. In practice, this means that either an
AOA-based or TDOA-based estimator can potentially be more
efficient depending on the variances of AOA and TDOA estima-
tion errors, σ2

α and σ2
τ , observed in a given situation.

For the special case of N = 2 arrays, the FIM F τ (r) is
singular and the CRBτ for the TDOA-based estimates does not
exist. However, FIMF α(r) for the AOA-based estimates is non-
singular such that andF (r) (35) is also nonsingular and CRB(r)
for the hybrid estimator can be computed. Because determinant
of F (r) has the property det(F (r)) ≥ det(F α(r)), CRB of
AOA-based and hybrid estimates satisfies the condition

CRBh ≤ CRBα. (46)

From (46), it follows that CRB of the hybrid ML estimator
(22) is not higher than the CRB provided by the AOA based (12)
estimator, and its relative efficiency in terms of CRB is

CRBα

CRBh
≥ 1. (47)

Representations (45) and (47) show that the relative potential
efficiency of the hybrid ML estimator is not lower than any of
the AOA-based and TDOA-based estimators.

V. TEST RESULTS

The main goal of the tests was to evaluate localization ac-
curacy and relative efficiency of the AOA-based, TDOA-based,
and the hybrid estimators using empirical MSE of the position
estimates, σ2

A, σ2
T , and σ2

H , provided by these estimators. Be-
cause data recordings required for comprehensive in situ tests
using N > 2 arrays were unavailable in this work, the localiza-
tion accuracy was tested using statistical simulations. For the
case of N = 2 arrays, we performed simulations and in situ
tests using data collected by an advanced underwater listening
station (ULS) designed by JASCO Applied Sciences (Canada) in
collaboration with Vancouver Fraser Port Authority’s Enhancing
Cetacean Habitat Observation Program and Transport Canada.
The ULS consists of two synchronized compact tetrahedral
arrays of M = 4 hydrophones each.

A. Statistical simulations

Simulations were conducted for a hypothetical network con-
sisting ofN = 3 and for ULS withN = 2 synchronized compact
arrays of underwater recorders. We assumed that each compact
array consisted of M ≥ 3 hydrophones spaced in the config-
uration that provide unambiguous estimation of azimuths (4)
using broadband BF-based estimator [39] or similar algorithms.
The arrays were uniformly spaced on a circle with 302-m ra-
dius. The coordinates of the arrays were r1 = [−130.7, 75.5]T ,
r2 = [130.7, 75.5]T , andr3 = [0, −151.0]T m for the network
consisting of N = 3 arrays, and r1 = [−151.0, 0.0]T and
r2 = [151.0, 0.0]T m for the ULS, respectively. The array
positions are shown in Fig. 2.

Statistical simulations were conducted for ten positions simu-
lating the locations of a source. Simulation points had horizontal
ranges r =

√
x2 + y2 = [100, 200, . . . , 1000] m from the

origin, and the azimuth α = 70◦. The maximum range was
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Fig. 2. Locations of compact arrays from the hypothetical network (symbol
“◦”) and from the ULS (symbol “Δ”). The simulated source positions are shown
by dots.

taken to provide sufficiently high detection probability of sounds
with the source level from 146 to 190 dB re 1 μPa2 typical for
low- and midfrequency sounds produced by marine mammals
[42]–[45]. The simulated source positions are shown in Fig. 2.
For each position, the empirical root mean square error (RMSE)

RMSE = σ̂ =

√√√√(L)−1
L∑

l=1

Δ2
l (48)

was computed using L = 1000 runs. Here, Δ2
l = (x̂l − x)2 +

(ŷl − y)2, and x̂l and ŷl are the AOA-based (12), TDOA-based
(17), or hybrid (24) position estimates obtained in the lth simu-
lation run, respectively. In each run, AOA and TDOA estimation
errors were simulated as random i.i.d. Gaussian variables with
zero mean and various standard deviations (STD) of AOA esti-
mation errors, σα, and TDOA estimation errors, στ .

In practice, the parameters σα and στ both depend on many
factors, such as sample rate, signal center frequency, bandwidth,
SNR, array geometry, and various effects of sound propagation
in the water. Considering all these factors were outside the scope
of this work. However, to make the simulation results realistic,
the empirical variances of azimuth and TDOA estimation errors
were taken from test results presented in the literature.

The research work in [39] reported the STD of azimuth
measurements, σα, varied from 0.2◦ to 3◦ depending on sig-
nal bandwidth, minimum frequency, and SNR. These values
were obtained for beluga whale (Delphinapterus leucas) vo-
calizations with >22 ms duration; 0, …,3000 Hz minimum
frequency; 25, …,500 Hz bandwidth; and 10, …,35 dB SNR.
The STD of TDOA measurements, στ , are obtained for lin-
ear frequency modulated signals at frequency from 200 to
1000 Hz and the SNR higher than 10 dB, varied from 1 to 100
ms [11]. Based on the results of these works, the parameters
σα = [0.2◦, 1.25◦, 3.0◦] and στ = [0.1; 1; 10] ms were used
for simulations.

The first goal of the statistical simulations was to evaluate
and compare the RMSE (48) provided by the AOA-based (12)
and TDOA-based (17) estimators for the case of N = 3 arrays.
The simulation scenario evaluated the dependence of the RMSE
on the horizontal range r. The simulation results as well as the

Fig. 3. Network with N = 3 arrays: RMSE of position estimates provided
by the AOA-based (symbol “◦”) and TDOA-based (symbol “Δ”) estimators
as functions of AOA estimation errors, σα, TDOA estimation errors, στ , and
horizontal range, r. Solid lines show the square root of the CRB for the AOA-

based estimator,
√

CRBα. Dashed lines display the square root of the CRB

for the TDOA-based estimator,
√
CRBτ .

corresponding CRB obtained for the network withN = 3 arrays
are shown in Fig. 3. For this simulation scenario, the relative
empirical efficiency of the AOA and TDOA-based estimators
was

σ2
A

σ2
T

= 0.005 . . . 59.

The second goal was to evaluate the impact of the AOA
estimation errors, σα , and TDOA estimation errors, στ , on the
position estimation accuracy provided by the hybrid ML estima-
tor (24). For this purpose, RMSE (48) of the hybrid estimator
was computed for all simulated source positions. In this test,
we also compared CRB of the AOA-based, TDOA-based, and
hybrid estimators. In all scenarios, the inequalities (44) and (45)
was true. The results of simulation and the corresponding CRB
obtained for the farthest simulated position located at the range
r = 1000 m from the center of the network are shown in Fig. 4.

Relative empirical efficiency of the hybrid estimator com-
puted for all simulated positions and all values of σα and στ

was min{σ2
A, σ

2
T }/σ2

H = 1.001 . . . 8.56, which complies with

(45).
For the case of N = 2 arrays, the TDOA-based estimator is

inapplicable such that we compared the AOA-based (30) and the
hybrid (24) estimators only. As it was mention in Section III, for
two-array networks, there exists a nonzero probability of outliers
in position estimates occurring if condition (32) for azimuth
estimates does not hold. Comprehensive study of the statistical
properties of outliers was outside the scope of this work. The
probability of outliers as function of σα and στ was evaluated
for all simulation points. It was found that the probability of
outliers increases as AOA estimation errors, TDOA estimation
errors, and distance to the source increase (see also Fig. 1).
The highest probability of outliers was observed for the farthest
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Fig. 4. Network with N = 3 arrays: RMSE of position estimates provided
by the hybrid estimator (symbol “×”) as functions of AOA estimation errors,
σα, and TDOA estimation errors, στ . The square root of the CRB (43) for
the hybrid estimator (44),

√
CRBh, are shown by the solid lines. Dashed lines

display the values of
√

CRBα (colored lines) and
√
CRBτ (black line) for the

AOA-based estimates and TDOA-based ML estimates, respectively.

Fig. 5. Network with N = 2 arrays: The probability of outliers provided by
the AOA-based estimator (dashed lines) and hybrid estimator (solid lines) as
functions of AOA estimation errors, σα, and TDOA estimation errors, στ .

simulated position (r = 1000 m). The empirical probabilities
of outliers obtained for this position are represented in Fig. 5.

The empirical RMSE of position estimates (48) was computed
after removing outliers such that only estimates with regular
errors obtained when condition (32) satisfied were used. The
RMSE provided by the AOA-based and hybrid estimators as
functions of the horizontal range, r, AOA estimation errors,
σα, and TDOA estimation errors, στ , are shown in Fig. 6.
The corresponding CRB values are also shown in this figure.
Relative empirical efficiency of the AOA and hybrid estimators
was σ2

A/σ
2
H = 1.05 . . . 10.2.

Fig. 6. Network withN = 2 arrays: RMSE of position estimates as functions
of AOA estimation errors, σα, TDOA estimation errors, στ , and horizontal
range, r. The AOA-based estimator is represented by symbol “◦”, and the
hybrid estimator is shown by symbols “∗” ( στ = 0.1 ms), symbols “+” (
στ = 1 ms), and “×” ( στ = 10 ms). Solid lines show the square root of the

CRB for the AOA-based estimator,
√

CRBα. Dashed, dash-dotted and dotted

lines represent the square root of the CRB for the hybrid estimator,
√

CRBh ,
corresponding to the STD στ = 0.1, 1, and 10 ms, respectively.

B. In Situ Test

The ULS designed by JASCO Applied Sciences (Canada) was
used as a network with N = 2 arrays for in situ testing. The
ULS was deployed in Boundary Pass, BC, Canada, between the
in- and outbound shipping lanes that lead to and from Vancou-
ver ports. Since June 10, 2020, the ULS has been performing
real-time measurements of underwater noise emissions of ves-
sels passing through Boundary Pass. Each array consisted of
M = 4GeoSpectrum M-36 hydrophones located in tetrahedral
configuration and sampled at 512 kHz using the eight-channel
analog-to-digital converter to ensure simultaneous sampling of
all eight hydrophones. Combined hydrophone sensitivity and
current-to-voltage converter board sensitivity were −165 dB re
1 V/µPa at 250 Hz. The hydrophones were spaced at d = 1.65 m
distance, which provided the half-wavelength frequency of the
arrays fλ/2 ≈ 440 Hz. The arrays were deployed at the ocean
bottom at a 192-m depth. The array positions and orientations
were measured during the deployment and calibrated using
a transponder with known coordinates [17], [24]. The array
positions were represented in a 2-D Cartesian coordinate system
with the origin O, located between the centers of array, and the
axis OX placed in a horizontal surface along a line connecting
array centers. Locations of the centers of ULS compact arrays
are shown in Fig. 7.

The goals of in situ testing were to evaluate AOA and TDOA
estimation errors provided by the ULS and the relative efficiency
of AOA-based and hybrid localization algorithms. For this pur-
pose, we used K = 6 passes of ships with known automatic
identification system (AIS)-based coordinates. The AIS tracks
were interpolated and corrected for timing errors and systematic
offsets using azimuth and elevation estimates of the dominant
noise source (propeller) of the ships. The corrected trajectories
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Fig. 7. Locations of ULS compact arrays (symbols “Δ”). The corrected
positions of ships used in the test are shown by colored lines. Dotted lines show
the boundaries of azimuth sectors for which the average RMSE of the position
estimates were computed.

of ships were computed as rk (tp) = rkAIS (tp)− δk, k =
1, . . . ,K, p = 1, . . . , P , where rkAIS(tp) is the interpolated
AIS-based coordinate of the kth ship at time tp, P is the number
of AOA and TDOA measurements of the kth ship, and δk is
the estimated offset of the dominant noise source relative to the
position of the GPS receiver (see [23] for more details). Ships had
lengths from 185 to 337 m; water speeds from 9.9 to 17.7 kn; and
their closest points of approach (CPA) to the origin in horizontal
plane ranged from 86 to 255 m. The corrected trajectories of
ships, rk(t), are shown in Fig. 7.

Azimuth and TDOA were estimated using ship noise gener-
ated within frequency band f ∈ [100, 1000] Hz for nonover-
lapping time intervals T = 0.6 s long and separated by
1 s. The wideband beamformer presented in [39] was used
to estimate azimuths. TDOA was measured for all M2 = 16
pairs of hydrophones as positions of peaks of correspond-
ing cross-correlation functions [39]. For the kth ship, the az-
imuth error provided by the nth array was computed as δ(n)αp =
α̂n(tp)− αn(tp), n = 1, 2, where α̂n(tp) is the azimuth esti-
mate obtained by nth array; and αn(tp) = αn(rk(tp)) is the
expected azimuth of the kth ship. TDOA errors were computed
as δτp = τ̂ (tp)− τ(tp), where τ̂(tp) and τ(tp) = τ(rk(tp)) are
the estimated and expected values of TDOA, respectively. The
STD of AOA and TDOA estimation errors was computed as

σ̂
(n)
αk =

√
μ

{(
δ
(n)
α1

)2

,
(
δ
(n)
α2

)2

, . . . ,
(
δ
(n)
αP

)2
}

σ̂τk =

√
μ
{
δ2τ1, δ

,2
τ2, . . . , δ

2
τP

}
, k = 1 . . .K (49)

where μ{x1, x2, . . . , xP } is the median value of P random
variables x1, x2, . . . , xP .

The total number of TDOA and AOA estimates obtained
for K = 6 ships was 1483 and 2966, respectively. His-
tograms of all computed TDOA and azimuth errors are shown in

Fig. 8. Histograms of (top) TDOA estimation errors and (bottom) azimuth
estimation errors obtained using ULS.

Fig. 8. The average empirical STD of TDOA and AOA es-
timates computed for all ships was σ̂τ = 3.2 ms and σ̂α =
2.5◦. A total of 181 TDOA estimates with |δτ | > 40 ms and
212 azimuth estimates with |δα| > 15◦ were identified as out-
liers. After excluding outliers, the average empirical STD was
σ̂τ = 2.5 ms and σ̂α = 2.2◦. The STD of AOA estimates
obtained for each individual array and each ship used in the
tests were {[1.0◦, 1.3◦]; [0.9◦, 2.4◦]; [3.5◦, 2.4◦]; [2.1◦, 3.2◦];
[1.0◦, 1.8◦]; [1.4◦, 1.2◦]}. The STD of TDOA estimates were
{2.1; 1.1; 3.2; 1.6; 2.9; 4.1} ms. It was also found that the abso-
lute value of the empirical correlation coefficient between AOA
and TDOA measurements was within the range from 0.08 to
0.34 such that AOA and TDOA estimates can be considered as
uncorrelated random variables.

The CRB values of the hybrid estimator (43) computed
for all ships used in the test as a function of ship azimuths
centered at the azimuth of the CPA, α(t)− αCPA, are shown
in Fig. 9. This figure demonstrates that for networks with
N = 2 arrays, position estimation errors strongly depend on
the distance and azimuth of the source. Because ship positions
changed, computing RMSE for each position rk(tp) was not
possible. To evaluate relative efficiency, the average empirical
RMSE was computed for five azimuth sectors with boundaries of
{−85◦, −60◦, −30◦, 30◦, 60◦, 85◦}. The average RMSE pro-
vided by the AOA-based (symbol “◦”) and the hybrid (symbol
“×”) localization algorithms are shown in Fig. 9. Relative
empirical efficiency of the AOA and hybrid estimators was
σ2
A/σ

2
H = 1.23 . . . 1.69.

VI. DISCUSSIONS AND CONCLUSION

The results of statistical simulations confirmed that in the case
of Gaussian errors, the RMSE of the position estimates provided
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Fig. 9. Average RMSE of positions estimates provided by AOA-based esti-
mator (symbol “◦”) and hybrid estimator (symbol “×”) as a function of ship
azimuths. Colored solid lines show the square root of the CRB for the hybrid
estimator,

√
CRBh , computed for each ship. Vertical dotted lines show the

boundaries of azimuth sectors for which the average RMSE of the position
estimates were computed.

by the ML AOA-based and TDOA-based estimators are well
approximated by the CRB. The accuracy of the AOA-based
and TDOA-based algorithms strongly depends on the AOA
estimation and TDOA estimation accuracy, respectively.

The hybrid ML estimator minimizes the position estimation
errors and is more efficient in terms of accuracy than any of AOA-
based or TDOA-based estimators. The impact of AOA-based and
TDOA-based estimates on the hybrid estimate depends on the
number of arrays in the network and on the AOA and TDOA
estimation errors. As Fig. 3 shows, for networks consisting of
N ≥ 3 arrays, the RMSE of the hybrid estimates is determined
by the TDOA-based estimates,σH ≈ σT , and is almost indepen-
dent of the AOA estimates if TDOA estimation errors are quite
small (στ ≤ 0.1 ms and σα ≥ 0.2◦). Similarly, the accuracy of
the hybrid algorithm is almost determined by the AOA-based
algorithm, σH ≈ σA, and the contribution of the TDOA-based
algorithm is negligible if TDOA estimation errors are large
(στ ≥ 10 ms andσα ≤ 3◦). Simulations showed that both AOA-
based and TDOA-based estimators provide comparable impact
on the hybrid estimates if στ ≈ 1 ms and σα = 0.2◦, . . . , 3◦.
For networks with N = 2 arrays, the TDOA-based algorithm
cannot be implemented, and both AOA and the hybrid algorithms
provide similar accuracy (see Figs. 5 and 9). The practical use of
the hybrid estimator in a two-array network may be justified to
reduce the likelihood of outliers occurring when condition (32)
is violated.

The results of in situ test showed that for signals within
frequency band f ∈ [100, 1000] Hz and for the arrays with
the half-wavelength frequency of fλ/2 ≈ 440 Hz, the empirical
STD of TDOA and AOA estimates can be σ̂τ ≈ 1, . . . , 4 ms and
σ̂α ≈ 0.9◦, . . . , 3.5◦. These values comply with the previously
obtained results presented in [11] and [39].

Empirical data also suggest that large-aperture arrays with
omnidirectional sensors (M = 1) allowing implementation of

the TDOA-based localization algorithms only may provide po-
tentially achievable localization accuracy in the case or small
TDOA estimation errors, στ ≤ 1 ms. But this situation may
rarely occur in practice. As test results presented in [11]
show, for low-frequency signals, the expected TDOA esti-
mation errors strongly depend on SNR. The empirical error
can be στ ≈ 1, . . . , 50 ms if SNR = 10, . . . , 40 dB and στ ≈
50, . . . , 800 ms if SNR = 0, . . . , 10 dB. The empirical values
of the AOA estimation errors provided by a tetrahedral compact
array with M = 4 sensors can be 0.2◦, . . . , 3.0◦ for low-
and midfrequency impulsive signals with SNR = 10, . . . , 35 dB
[39].

Thus, the main conclusion of this work is that networks with
synchronized compact arrays can provide significant benefits
in terms of using various AOA-based, TDOA-based, and hy-
brid localization techniques. In general, the hybrid estimator
provides higher localization accuracy than any of AOA-based
and TDOA-based estimators. But the practical choice of lo-
calization technique strongly depends on the AOA and TDOA
estimation errors provided by the arrays for a given signal type.
For narrowband signals within the frequency range close to
the half-wavelength frequency of compact arrays, AOA-based
localization techniques can be more accurate than TDOA-based
estimators. For high-frequency signals, TDOA-based estimators
can be more efficient.

The results from this work make it possible to evaluate the
performance of various network configurations before they are
deployed. The potential areas of future research include studying
the influence of signal parameters on AOA, TDOA, and position
estimation accuracy in various real-world scenarios.
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