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ABSTRACT:
Measurements of the source levels of 9880 passes of 3188 different large commercial ships from the Enhancing

Cetacean Habitat and Observation (ECHO) program database were used to investigate the dependencies of vessel

underwater noise emissions on several vessel design parameters and operating conditions. Trends in the dataset were

analyzed using functional regression analysis, which is an extension of standard regression analysis and represents a

response variable (decidecade band source level) as a continuous function of a predictor variable (frequency). The

statistical model was applied to source level data for six vessel categories: cruise ships, container ships, bulk

carriers, tankers, tugs, and vehicle carriers. Depending on the frequency band and category, the functional regression

model explained approximately 25%–50% of the variance in the ECHO dataset. The two main operational

parameters, speed through water and actual draft, were the predictors most strongly correlated with source levels in

all of the vessel categories. Vessel size (represented via length overall) was the design parameter with the strongest

correlation to underwater radiated noise for three categories of vessels (bulkers, containers, and tankers). Other

design parameters that were investigated (engine revolutions per minute, engine power, design speed, and vessel

age) had weaker but nonetheless significant correlations with source levels.
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I. INTRODUCTION

The international shipping lanes in the coastal waters of

southern British Columbia, Canada directly overlap with the

critical habitat of the endangered Southern Resident killer

whales, who use sound to navigate, communicate, and, most

importantly, echolocate to find prey. Fisheries and Oceans

Canada identified underwater noise from shipping as a key

threat to the recovery of this endangered species (DFO,

2017). Indeed, vessel noise is often the main driver of acous-

tic habitat quality within coastal areas of importance to sen-

sitive marine mammal species (Erbe et al., 2012; Williams

et al., 2013; Erbe et al., 2019). In 2014, the Enhancing

Cetacean Habitat and Observation (ECHO) program was

established by the Vancouver Fraser Port Authority to better

understand and reduce the effects of shipping on endangered

whales with a focus on underwater noise (VFPA, 2016). In

conjunction with partners at Transport Canada (Ottawa,

ON), Ocean Networks Canada (Victoria, BC), and JASCO

Applied Sciences (Victoria, BC), a project was initiated in

2015 to develop a real-time method for measuring and

reporting vessel source levels for deep sea vessels transiting

to the Port of Vancouver (Hannay et al., 2016).

Between September 2015 and January 2020, more than

20 000 vessel source level measurements for vessels of

opportunity were collected on behalf of the ECHO program,

referred to here as the ECHO database. These data were col-

lected using three different hydrophone stations (Fig. 1),

approximately conforming to the ANSI (2014) and ISO

(2016) standards for vessel radiated noise level (RNL) and

source level measurements. A dataset of this size provides

an unprecedented opportunity for statistical investigation of

correlations between underwater noise emissions measure-

ments and readily available vessel design and operational

characteristics.

A previous study (MacGillivray et al., 2019) identified

that slowing vessel speed is an effective method for reduc-

ing underwater radiated noise from commercial vessels.

Vessel slowdowns can provide an immediate benefit to

underwater noise reduction but may not always be safe and

feasible. The key to reducing overall underwater noise for

the Southern Resident killer whale and other aquatic species

worldwide will be reducing vessel noise at the source, likely

through a combination of operational and design measuresa)Electronic mail: alex.macgillivray@jasco.com
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(Southall et al., 2017). This study was undertaken to investi-

gate correlations between design and operational character-

istics to develop a statistical model to predict underwater

radiated noise and identify the key drivers most affecting

noise predictions. Understanding these relationships can

inform or enhance underwater noise modelling efforts and

assist in designing future noise reduction efforts.

Although engineering controls for vessel underwater

radiated noise are well developed (Spence and Fischer,

2017), the reasons for the large observed differences in

underwater radiated noise between similar types of vessels

remain unclear (Leaper and Renilson, 2012). While it has

been proposed that quieting efforts should be focused on the

noisiest vessels, the first step must be to identify which

design and operating characteristics are associated with the

noisiest vessels (Leaper et al., 2014). Recent European

research programs have highlighted the need for more noise

measurements of commercial vessels to fill current data

gaps (Brooker and Humphrey, 2015; Audoly et al., 2016).

Similarly, a recent horizon scanning exercise found agree-

ment between researchers, policy makers, and other stake-

holders that research into the characteristics of marine

vessels which are associated with underwater noise should

be prioritized (McWhinnie et al., 2017). The current study

was undertaken in an effort to help fill in these data gaps

using the large ECHO source level dataset.

This article describes the development of a statistical

model that was used to associate vessel design and operating

characteristics with measurements from the ECHO database.

The statistical model was used to identify how frequency-

dependent source levels varied with nine predictor variables

in six different categories: cruise ships, container ships, bulk

carriers and general cargo ships, tankers, tugs, and vehicle

carriers. Section II describes the data collection and analysis

methods and the development of the statistical model.

Section III describes the results of applying the statistical

model to the ECHO dataset. Section IV includes a discus-

sion of which model parameters were most influential, sour-

ces of uncertainty, comparisons with prior work, and a

discussion of remaining data gaps. Finally, Sec. V provides

a summary of the main conclusions of this work.

II. METHODS

A. Dataset overview

Understanding underwater radiated noise from marine

vessels is a priority study area for the ECHO program. Since

September 2015, the ECHO program has accumulated a com-

prehensive database of source level measurements for vessels

of opportunity transiting along the international shipping

lanes near the Port of Vancouver (Canada). Source level data

were collected at three sites within the Salish Sea (Fig. 1) in

water depths ranging from 173 to 250 m using a combination

of cabled hydrophone nodes and autonomous seabed record-

ers. The ECHO database was automatically collected and

analyzed using JASCO’s ShipSoundTM system (Victoria, BC)

and includes measurements of many commercial vessel types,

which were identified through correlation of acoustic mea-

surements to the automated identification system [AIS; by

Maritime Mobile Service Identity (MMSI) or International

Maritime Organization (IMO) number]. Each vessel measure-

ment in the ECHO database includes the monopole source

level (MSL), RNL, and associated metadata, including closest

point of approach (CPA) to the station, speed through water

(STW), vessel draft, navigational information, surface current

velocity, and weather parameters. The measurements ana-

lyzed for the present work were collected from September

2015 through January 2020.

The MSL and RNL were calculated in standard decide-

cade bands from 10 to 63 000 Hz. The RNL was calculated

assuming spherical spreading propagation loss (PL; i.e.,

PL ¼ 20� log10r) as per the ANSI standard, whereas the

MSL was calculated using a frequency-dependent PL model

based on the numerical solution of the acoustic wave equa-

tion, which accounts for the effect of the environment on

sound transmission. At 5 kHz and below, PL was calculated

using a split-step Pad�e parabolic equation model (Collins,

1993), modified to treat shear wave reflection losses in the

seabed (Zhang and Tindle, 1995). Above 5 kHz, PL was cal-

culated using an image-method model (Brekhovskikh and

Lysanov, 2003), which accounts for surface and seabed

reflection coefficients and frequency-dependent absorption

(François and Garrison, 1982). The RNL and MSL metrics

incorporated seawater absorption into the PL calculation

above 5 kHz, which is not specified in the ANSI standard for

calculating the RNL. The incorporation of absorption into

these calculations was necessary because vessel CPA distan-

ces often differed from the ANSI S12.64 (ANSI, 2014)

specified distance. The average PL in each decidecade band

was based on the mean propagation factor calculated at

FIG. 1. (Color online) A map showing locations of hydrophone data collec-

tion for the ECHO source level database. The dates of data collection were

September 2015–April 2018 in Georgia Strait, July 2017–October 2017 in

Haro Strait, and August 2018–January 2020 in Boundary Pass.
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50 frequencies, which were spaced logarithmically between

the minimum and maximum band limits.

Calculation of the MSL depends on the choice of the

source depth, which was taken to be half the actual vessel

draft at the time of measurement. The PL was smoothed by

assuming the source depth had a Gaussian distribution in a

manner similar to that used by Wales and Heitmeyer (2002),

where the standard deviation was taken to be 30% of the

mean source depth. It should be noted that the value of the

MSL is sensitive to the assumed monopole source depth at

low frequencies, and the monopole source depth was not a

directly measured dimension or otherwise determined quan-

tity (although recent work by Tollefsen and Dosso, 2020,

suggests that it may be estimated using arrays of hydro-

phones and matched-field inversion). It should be noted that

the ISO 17208–2 standard for vessel source level measure-

ment in deep water (ISO, 2019a,b) assumes that the source

depth is equal to 70% of the vessel draft rather than the 50%

used here, but this standard was published after data collec-

tion for the ECHO program began. Differences in assumed

monopole source depth may lead to systematic differences

in reported source levels between studies.

While the RNL and MSL measurements are collectively

referred to here as source levels, the RNL is actually an

affected source level (i.e., a source level measurement

affected by surface and seabed reflections). Only the MSL

strictly corresponds to the ISO standard definition of a

source level (ISO, 2017). More details regarding the meth-

ods used by ShipSound for calculating source levels of

marine vessels are given in Hannay et al. (2016) and

MacGillivray et al. (2019).

This research project was limited to commercial vessels

in the following six categories:

• bulk carriers and general cargo ships (hereafter referred to

as “bulkers”),
• container ships,
• cruise ships (i.e., passenger vessels greater than 100 m in

length, excluding ferries),
• tankers,
• tugs, and
• vehicle carriers.

These six categories were based on the vessel types

recorded by the local pilotage authority and are used by the

ECHO program for their targeted underwater noise reduc-

tion initiatives (Burnham et al., 2021; Trounce et al., 2021).

Previous studies of vessel source level measurements

(MacGillivray et al., 2019) indicated clear differences in the

operational and noise profiles of these different vessel cate-

gories. As such, these categories were maintained as sepa-

rate in the statistical analysis with the intent to develop a

robust source level prediction model for each category.

These categories were also consistent with those used by a

previous vessel underwater radiated noise study in the same

region (Veirs et al., 2016).

Prior to the inception of the this study, the ECHO pro-

gram convened a meeting of their Acoustic Technical

Committee (ATC), an advisory group of acousticians, bio-

acousticians, naval architects, and engineers, to identify how

their database of source level measurements could be used

to better understand factors driving underwater radiated

noise from vessels (VFPA, 2018). The goal of the ATC

meeting was to identify those design characteristics that

were expected to be correlated with vessel underwater radi-

ated noise and recommend methods for investigating their

influence. Following the meeting, the ECHO program

sought additional information on those vessel design charac-

teristics recommended by the ATC, although it should be

noted that many design characteristics (particularly those

related to propeller design and resilient mounting of machin-

ery) were unobtainable from publicly available sources.

Records from the ECHO database were joined to two

additional databases to provide information on vessel design

characteristics and operating conditions for the noise corre-

lations study:

• a database of vessel design characteristics provided by

Lloyd’s List Intelligence (London, UK), including varia-

bles describing dimensions, displacement, propulsion, and

nominal operating conditions, and hereafter referred to as

the LLI database; and
• a database of transit logs providing records of actual ves-

sel draft at the time of transit from the Pacific Pilotage

Authority (Vancouver, BC) as recorded by on-duty pilots,

and hereafter referred to as the PPA database.

Each measurement in the ECHO database was

matched to records from the LLI and PPA databases based

on the IMO number whenever possible. The IMO number

is a seven-digit code that uniquely identifies large cargo

vessels (>300 gross tons) and large passenger vessels

(>100 gross tons). In cases where an IMO number was

unavailable or was recorded incorrectly, records were

instead matched on the basis of MMSI or by vessel name.

IMO numbers, MMSI numbers, and vessel names in the

ECHO database were obtained from the AIS as broadcast

at the time of measurement. The data from all three data-

bases were merged into a single vessel noise database for

subsequent analysis. Vessel subtypes from the LLI data-

base were cross-checked against the six ECHO categories

to verify that the ship classifications were consistent

between the different databases.1

Only measurements that passed a manual quality review

were retained for subsequent statistical analysis. Vessels

that could not be matched to an entry in the LLI database

were excluded from the analysis. A total of 9880 accepted

measurements of 3188 unique vessels met these criteria and

were retained in the merged vessel noise database.

In developing the statistical model, predictor variables

were taken to be those variables that may have influenced

underwater noise emissions. Two types of predictor varia-

bles were considered in this study:

• Design: variables related to the design characteristics of a

marine vessel. These variables are assumed to remain
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constant between repeat measurements of the same ves-

sel; and
• Operational: variables related to the operational character-

istics of a marine vessel. These variables may change

between repeat measurements of the same vessel.

A set of suitable candidate predictors were identified from

all of the data sources captured in the merged vessel noise

database (Table I). These candidate predictors were evaluated

during the model development to determine which variables

should be retained for the final statistical model (see Sec. II E).

B. Data conditioning

A manual review was performed to clean the merged

database and remove outlier values. Invalid data were cor-

rected when possible (e.g., using online databases) or

flagged as missing if they could not be corrected. A small

subset of the dataset contained sonar-like signals (e.g., from

echosounders) in the 16–31.5 kHz frequency range. Source

levels in frequency bands affected by this issue were flagged

as missing data [i.e., value set to not available (NA)]

because none of the available design data in the LLI data-

base pertained to sonar equipment and, furthermore, the

measurement geometry was not designed to sample narrow-

beam sound emissions from hull-mounted sonar transducers.

The cleaned version of the merged database was used for all

of the subsequent statistical analyses.

The merged database contained missing (NA) values

where information for a specified predictor was unavailable

in the LLI and PPA databases. The percentage of missing

data was calculated for each of the candidate predictors,

broken down by the vessel category (Table II). Source levels

were treated as missing (NA) when background noise levels

were within 3 dB of received signal levels during a vessel

measurement, following the ANSI S12.64 standard (ANSI,

2014). Additionally, the source levels for the 40, 50, and

63.1 kHz decidecade bands were missing for a subset of the

measurements collected in the Georgia Strait location as the

sampling rate was lower at this location (64 kHz). The miss-

ingness (or absence) was generally greatest at the lowest

and highest frequencies for all of the vessel categories.

Imputation procedures, based on non-missing data for simi-

lar measurements, were used to fill in missing predictor and

source level values for the functional regression analysis.1

C. Calculation of derived variables

Physical models were used to capture the effect of water

currents, wind, and source-receiver geometry on measured

source levels. The magnitudes and directions of wind and

water currents were captured by ShipSound at the time of

measurement and stored in the ECHO database. The wind-

speed and direction data were obtained from nearby

Environment Canada weather stations in Haro Strait,

Georgia Strait, and Boundary Pass (Environment Canada,

2020). Where possible, ocean current data were obtained

from a combination of acoustic Doppler current profiler

(ADCP) measurements collocated with the underwater lis-

tening station (ULS) nodes in Georgia Strait and Boundary

Pass. Where direct ocean current measurements were

unavailable (e.g., for the Haro Strait hydrophones), ocean

current data at the Haro Strait ULS were obtained from the

WebTide tidal prediction model (version 0.7.1), provided by

TABLE I. The candidate predictor variables from the merged vessel noise database. Type “O” denotes an operational parameter (which varies by measure-

ment); type “D” denotes a design parameter (which varies by vessel).

Variable name Type Description and units

Actual.Vessel.Draft O Actual vessel draft at time of measurement (m)

STW O Speed through water (STW; kn)

Wind.Resistance O Factor measuring resistance on the vessel due to apparent wind (m2/s2)

Gross.LLI D Gross tonnage

Draft.LLI D Maximum draft at summer load lines (m)

LOA.LLI D Length overall of the vessel (m)

Year.Of.Build.LLI D Year the vessel was built

Speed.LLI D Design speed (kn)

Displacement.LLI D Maximum displacement of the vessel, measured at summer load line (tonnes)

Breadth.Moulded.LLI D Maximum breadth of the vessel (m)

Main.Engine.Type.LLI D Engine type (categorical)

Main.Engines.No.LLI D Number of main engines in the vessel

Main.Engine.kW.LLI D Maximum rated power output of the main engines (kW)

Main.Engine.RPM.LLI D Maximum rated RPM of the main engine

Main.Engine.Cylinders.LLI D Number of cylinders in the main engine

Main.Engine.Stroketype.LLI D Number of strokes the engine performs (2 or 4 strokes)

Propeller.Type.LLI D The type of propeller (categorical)

No.Of.Propulsion.Units.LLI D Number of propulsive engines (corresponds to number of propellers)

Block.Coefficient D Ratio of displacement to submerged volume

Speed.Fraction D Ratio of actual STW to design speed

Draft.Fraction D Ratio of actual draft to design draft

Vessel.Age D Difference between year of measurement and year built (years)
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Fisheries and Oceans Canada (Bedford Institute of

Oceanography, 2015).

For each measurement, the STW vector was computed

as the difference between the speed over the ground vector

(from AIS) and ocean current vector. STW was used in the

statistical analysis to capture in a single predictor the effect

of the water current and vessel speed on underwater radiated

noise. Thus, the magnitude of the resulting STW vector was

used as a predictor in the subsequent statistical analysis. The

speeds over the ground and ocean currents were not used as

predictors because they are implicitly included in the STW

calculation. The effect of wind on vessel source levels was

captured using a dimensionless wind resistance factor, Kw,

which depended on the speed and course over the ground of

the vessel and magnitude and direction of the wind at the

time of measurement (see the Appendix).

While the measurement procedure was established to

generate repeatable source levels and minimize the influence

of source-receiver geometry on measured source levels, dif-

ferences in the source-receiver geometry between measure-

ments may nonetheless have a residual influence on the

measured source levels. Such influence comes about natu-

rally in the RNL metric, which does not explicitly account

for the effect of the environment on each measurement.

Such influence may also come about in the MSL metric due

to imperfect characterization of the environment in the PL

model or mismatch in the actual versus assumed source

depth. To control for these residual effects, the surface graz-

ing angle was included as a predictor in the statistical analy-

sis to control for differences in sampling geometry between

measurements and sites. The surface grazing angle was

calculated from the horizontal distance of the CPA of the

vessel (x0) and depth of the hydrophone (h) such that

u ¼ tan�1 x0

h

� �
: (1)

Besides capturing x0 and h in a single statistical predictor,

another advantage of using the surface grazing angle is that

it also captures residual cancellation of radiated sound by

the sea-surface (i.e., the Lloyd-mirror effect), which is not

fully accounted for in the RNL calculation.

Three dimensionless derived quantities were also calcu-

lated from groups of predictors in the merged vessel noise

database and evaluated for predictive significance. The first

derived quantity was the block coefficient, which was the ratio

of the volume of displacement (V; in cubic metresÞ to the

product of the breadth (B), length overall (L), and draft (d),

Cb ¼
V

B� L� d
: (2)

Note that the block coefficient could only be calculated for

the summer draft (i.e., as a static value) because the true dis-

placement depends on the actual draft in a manner that

depends on the hull design. The second derived quantity

was a dimensionless speed, which was the ratio of the actual

STW (v) to the design speed of the vessel (v0Þ, such that

v% ¼
v

v0

: (3)

The third derived quantity was the dimensionless draft,

which was the ratio of the actual draft (d) to the summer

draft (d0),

TABLE II. The fraction of missing values (i.e., missingness) of predictor variables from the ECHO vessel noise database as a percentage of total records.

The missingness of the operational variables is given as a percentage of total measurements. The missingness of the design variables is given as a percentage

of total vessels.

Variable Bulker Container Cruise Tanker Tug Vehicle carrier

Actual.Vessel.Draft 0.0% 0.0% 0.5% 0.0% 0.3% 0.0%

STW 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Wind.Resistance 0.0% 0.0% 0.0% 0.0% 0.0% 0.0%

Gross.LLI 0.0% 0.0% 2.2% 0.0% 5.3% 0.0%

Draft.LLI 0.2% 0.0% 2.2% 0.5% 6.0% 0.0%

LOA.LLI 0.0% 0.0% 2.2% 0.0% 4.0% 0.0%

Year.Of.Build.LLI 0.0% 0.0% 2.2% 0.0% 4.6% 0.0%

Speed.LLI 0.2% 0.2% 10.9% 0.0% 10.6% 0.5%

Displacement.LLI 0.0% 0.0% 2.2% 0.0% 6.0% 0.0%

Breadth.Moulded.LLI 0.0% 0.0% 2.2% 0.0% 6.6% 0.0%

Main.Engine.Type.LLI 57.7% 43.0% 50.0% 55.7% 74.8% 51.8%

Main.Engines.No.LLI 0.8% 0.0% 15.2% 0.9% 45.7% 1.8%

Main.Engine.kW.LLI 1.4% 1.6% 8.7% 0.9% 6.6% 0.5%

Main.Engine.RPM.LLI 9.7% 3.0% 41.3% 12.7% 80.1% 6.4%

Main.Engine.Cylinders.LLI 21.7% 8.5% 30.4% 21.7% 64.9% 14.5%

Main.Engine.Stroketype.LLI 19.3% 9.2% 30.4% 19.0% 69.5% 20.9%

Propeller.Type.LLI 46.9% 41.4% 41.3% 47.1% 17.9% 42.7%

No.Of.Propulsion.Units.LLI 0.2% 0.0% 2.2% 0.5% 9.3% 0.0%

Block.Coefficient 0.2% 0.2% 10.9% 0.0% 10.6% 0.5%

Speed.Fraction 0.2% 0.0% 2.2% 0.5% 6.0% 0.0%

Draft.Fraction 0.0% 0.0% 2.2% 0.0% 4.6% 0.0%
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d% ¼
d

d0

: (4)

These three derived quantities were evaluated using a uni-

variate analysis to determine whether they were more

strongly correlated with vessel source levels than the con-

stituent quantities on their own.

D. Subsampling of repeat measurements

Many vessels in the ECHO vessel noise database had

more than 1 measurement, with 161 vessels (of the 3188

total) having 10 or more measurements. Repeat measure-

ments are valuable when they capture the same vessel

under different operating conditions, but they can also

bias the analysis by weighting the result toward the most

frequently sampled vessels. To balance these competing

effects, repeat vessel measurements were randomly sub-

sampled (without replacement) so that they were included

only when the following three operating conditions were

substantially different: STW, actual draft, and wind resis-

tance. To perform the subsampling, repeat measurements

of a vessel were binned according to these three variables

and a single measurement was randomly selected from

each bin, up to a maximum of eight randomly selected

measurements per vessel. The following bin widths were

used for the subsampling procedure:

• STW: bin width equal to 20% of vessel design speed;
• actual draft: bin width equal to 20% of vessel summer

draft; and
• wind resistance: bin width equal to 100 ¼ (10 m/s wind-

speed)2/(1 m2/s2).

The subsampling ensured that different operating condi-

tions were captured in the statistical analysis without biasing

the result too heavily to any single vessel.

E. Statistical model development

Exploratory data analysis methods were used to exam-

ine the interrelationships among the ship characteristics and

operational parameters and noise across frequency bands.

Bivariate scatterplots (i.e., X-Y plots) and correlation coeffi-

cients were created for pairs of numerical variables to iden-

tify trends and outliers. Density plots (i.e., smoothed

histograms) were used to assess the distributions of numeri-

cal variables. These exploratory plots were also used for

identifying which variables should be transformed for subse-

quent regression analysis. A logarithmic transformation was

identified as the most suitable transformation for most pre-

dictor variables because source levels also measure radiated

noise on a logarithmic (i.e., decibel) scale.

Not all of the predictors in the merged vessel noise data-

base were retained for the regression analyses. Variables with

a large amount of missing data or redundant variables were

removed. Including redundant predictor variables causes col-

linearity that can lead to numerical instability and inaccurate

regression coefficient estimates. Additionally, fitting too many

predictors can lead to overfitting the data and reducing the

generalizability of the statistical model. Some predictors were

not immediately relevant to underwater radiated noise, and

others did not exhibit a strong correlation with measured

source levels, hence, they were dropped from the statistical

model.

Variable selection for developing the final model was

performed using a combination of statistical analysis and

expert knowledge. Functional regression analysis (see Sec.

II F) was used to investigate linear trends between individual

(transformed) variables and source levels across decidecade

bands. Those variables that had weak correlations were

omitted, particularly if another variable captured a closely

related design characteristic of a vessel. A short list of

design predictors was reviewed in consultation with a team

of subject-matter experts to identify which ones were to be

retained, developing a functional regression model with

multiple predictors.

The final functional regression models simultaneously

analyzed the correlation of the subset of the predictors with

vessel source levels. Functional regression models were

developed in a forward-stepwise fashion by incrementally

adding predictors to the model and evaluating the coefficient

of determination (R2) versus frequency. Operational param-

eters were added first, followed by design parameters.

Predictors were retained in the final model if they increased

the R2 value over a range of frequencies.

F. Functional regression

Functional data analysis is a modern statistical tech-

nique (Ramsay and Silverman, 2005) used to analyze the

characteristics of curves or profiles. Functional regression

analysis provides a means for carrying out regression analy-

sis when the outcome or predictor variable values are curves

rather than individual data points. For example, Ainsworth

et al. (2011) used functional data analysis techniques to

relate daily river flow patterns to annual salmon returns.

This approach identified the river flow patterns and seasons

with the strongest relationships to salmon return rates. In the

present context, functional regression analysis is used to

model how source level patterns across sound frequencies

are affected by ship characteristics and operational parame-

ter variables.

The advantage of functional data analysis is that it

captures the information in the entire curve (i.e., the entire

source level versus frequency profile). Rather than looking

at individual correlations of ship characteristics and opera-

tional parameter variables with source levels in distinct

frequency ranges, functional regression analysis simulta-

neously models the relationship of ship characteristics

with the entire source level curve. Thus, functional regres-

sion models identify which ship characteristics and opera-

tional parameters best predict noise and how these

relationships change across frequency bands.

Functional regression analysis is an extension of stan-

dard regression analysis. For each observation, the outcome
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variable value (or predictor variable values) can be a curve

rather than a single number. Standard regression analysis

leads to a single regression coefficient for each predictor.

On the other hand, functional regression analysis avoids the

need to run multiple regression analyses on noise levels

aggregated across frequency bands. It provides simultaneous

estimates in the form of a regression coefficient function for

each predictor variable. This function indicates which fre-

quencies are most correlated with a predictor variable and

the direction of the relationship across all frequencies. For

example, a predictor variable may have a positive relation-

ship with source levels at low frequencies, no relationship

with source levels at mid frequencies, and a negative rela-

tionship with source levels at high frequencies.

Similar to standard regression analysis, functional

regression analysis models can include a single predictor or

multiple-predictor variables (single-variable and multiple-

variable cases). Multiple-predictor functional regression

models show the relationship between predictors and vessel

source levels (MSL and RNL) in decidecade bands.

The functional regression model with multiple covari-

ates is

yi fð Þ ¼ a fð Þ þ xT
i b fð Þ þ ei fð Þ; (5)

where yiðf Þ is the source level for observation i at frequency

f, aðf Þ is the intercept, xi is the vector of covariate values for

observation i, b(f) is the vector of regression slopes, one for

each covariate, and ei(f) is the error for observation i. The

noise and regression slopes are modelled as smooth func-

tions across the frequency range. Therefore, the slope esti-

mates can be viewed as a curve where the x axis is

frequency and the y axis is the regression slope. Therefore,

the regression estimates can be viewed as a curve for each

covariate with frequency on the x axis and slope on the y
axis. These curves show the direction and strength of each

covariate across all frequencies.

Functional regression modelling was performed using

the R programming language (version 4.0.5; R Core Team,

2020) using the fRegress function in the fda package (ver-

sion 5.1.9; Ramsay et al., 2020). Smoothing was applied to

the curves using a b-spline basis evaluated on the range of

observed frequencies. Lambda, which specifies the amount

of smoothing, was chosen to minimize the average general-

ized cross-validation (GCV) criterion.

III. RESULTS

A. Exploratory analysis

Plots of the decidecade band measurements showed that

the average source level versus frequency curves exhibited a

similar pattern for all six vessel categories (Fig. 2): noise

emissions below 100 Hz were dominated by a broad hump,

centered around 50 Hz, and noise emissions above 100 Hz

steadily decayed with frequency at a rate of approximately

�8.2 dB per decade. Average noise emissions were gener-

ally the highest for container vessels, which was consistent

with previous observations by McKenna et al. (2012).

Average noise emissions were generally lowest for cruise

vessels. Although the average source level trend was smooth

for each category, there was a significant amount of variabil-

ity between measurements, particularly at the lower and

higher ends of the measured frequency range. Furthermore,

many individual measurements featured strong spikes, cor-

responding to narrowband or tonal features in their source

level spectrum. It is interesting to note that similar narrow-

band tones also were observed in measurements of container

vessels in Santa Barbara Channel by McKenna et al. (2013).

Several notable observations resulted from the explor-

atory analysis of the merged vessel noise database:

• A range of operational and measurement conditions were

sampled for each vessel category (Fig. 3). The spread in

STW values and the bi-modal distributions of some cate-

gories were due to the inclusion of measurements from

the Haro Strait and Boundary Pass slowdown periods in

the data set (see MacGillivray et al., 2019; Burnham

et al., 2021).

FIG. 2. (Color online) The decidecade band MSL versus frequency mea-

surements from the ECHO dataset by vessel category. The thin blue lines

show individual source level measurements, and the black lines show the

median measured source level for each category.
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• Scatterplots and density plots indicated that logarithmic

transformations were appropriate for linearizing observed

trends in most predictor variables. Exceptions were for

variables containing negative or zero values (e.g., wind

resistance) and categorical variables (e.g., engine type).

The surface grazing angle was not subjected to a logarith-

mic transformation as it spanned a small range of values.
• Several design characteristics were dominated by a single

value, which made them unsuitable for statistical analysis.

For example, the overwhelming majority of vessels used

conventional diesel propulsion (only seven vessels used

diesel-electric or gas turbine propulsion), fixed-pitch pro-

pellers (97.3% of vessels), and had a single two-stroke

engine (96.7% of vessels). The homogeneity of these vari-

ables meant that meaningful correlations could not be

inferred from the data.
• In general, design characteristics of tugs and cruise ves-

sels were considerably different from those of the other

categories.

Univariate correlation coefficients were used to identify

which predictors had the strongest correlation with vessel

source levels over a wide range of frequencies. In general,

the strongest univariate correlations were observed for the

two main operational parameters: STW and actual draft.

Other parameters were observed to have weaker correlations

with vessel source levels. Notably, the derived variables

described by Eqs. (2)–(4) (block coefficient, speed fraction,

and draft fraction) had lower univariate correlation coeffi-

cients than their component variables. This suggested that

including these derived variables in a multiple-predictor

model would not provide any more explanatory power than

including their component variables. Furthermore, logarith-

mic transformation of these derived variables would simply

transform them to sums in the functional regression model

[Eq. (5)]. Thus, the derived variables were excluded from

consideration in the final functional regression model.

Four design parameters, all related to vessel dimen-

sions, were found to be strongly correlated with each other:

length overall (LOA.LLI), gross tonnage (Gross.LLI),

moulded breadth (Breadth.Moulded.LLI), and displacement

(Displacement.LLI; Table III). Due to their strong collinear-

ity, these variables could not be added together during step-

wise development of the final functional regression model.

To address this issue, length overall (LOA.LLI) was

selected as the primary size-related design parameter during

initial model development. The remaining size-related vari-

ables were held back and added only after all of the other

design variables were added. This was done as a final check

to assess whether they provided additional improvement to

the final model.

B. Functional regression model

While the regression results were generally different for

each vessel category, incremental analysis of the stepwise

R2 values showed that the operational variables (STW,

actual draft) explained the largest fraction of source level

variability. The design parameters, by contrast, generally

explained much less of the variability. In particular, the

additional size-related variables did not generally improve

the fit of the model to the data, therefore, they were

excluded. Thus, the final model included nine predictors and

had the following form:

FIG. 3. Histograms of operational

variables and measurement condi-

tions for the ECHO data set. The

heights of the bars indicate the rela-

tive number of samples at each x
value.

TABLE III. The correlation coefficients (r) of the log-log trends between

pairs of design variables related to vessel dimensions (see Table I for

definitions).

Variable Breadth.Moulded.LLI Gross.LLI Displacement.LLI

LOA.LLI 0.976 0.985 0.977

Breadth.Moulded.LLI — 0.982 0.978

Gross.LLI 0.985 — 0.965

1554 J. Acoust. Soc. Am. 152 (3), September 2022 MacGillivray et al.

https://doi.org/10.1121/10.0013747

https://doi.org/10.1121/10.0013747


yi fð Þ ¼ a fð Þ þ

log10 d=1 mð Þ
log10 v=1 knð Þ
Kw=1 m2s�2

u=1�

log10 L=1 mð Þ
log10 n =1 RPMð Þ
log10 P=1 kWð Þ

log10 v0=1 knð Þa = 1 yr

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

T bd fð Þ
bv fð Þ
bKw

fð Þ
bu fð Þ
bL fð Þ
bn fð Þ
bP fð Þ
bv0

fð Þ
ba fð Þ

0
BBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCA

þ ei fð Þ; (6)

where yi fð Þ was the estimated MSL (LSÞ for measurement i,
and the predictors included in the model were as follows

(with the database variable name indicated in parentheses):

(1) Actual draft, d (Actual.Vessel.Draft);

(2) STW, v (STW);

(3) wind resistance, Kw (Wind.Resistance);

(4) surface grazing angle, u (Surface.Angle);

(5) length overall, L (LOA.LLI);

(6) nominal main engine revolutions per minute (RPM),

n (Main.Engine.RPM.LLI);

(7) total main engine power, P (Main.Engine.kW.LLI);

(8) design speed, v0 (Speed.LLI); and

(9) vessel age, a (Vessel.Age).

The model of Eq. (6) was fit to the ECHO dataset sepa-

rately for each of the six vessel categories by minimizing

the model errors, eiðf Þ, as a function of frequency.

The ranges of the various design parameters used to

develop the final model were summarized in box-and-whis-

ker plots for each category (Fig. 4). Functional regression

analysis was applied to the full set of MSL measurements

using the nine predictors listed above. This resulted in sets

of b fð Þ functions that described the frequency-dependent

slope of the trend between (transformed) predictors and

decidecade band source levels in each vessel category (Fig.

5). The regression functions indicated how strongly the

source levels at each frequency correlated with each predic-

tor (either positive or negative). Confidence intervals (95%)

were calculated for the regression functions (Fig. 6). The

correlation was not considered statistically significant where

the confidence intervals crossed zero. Note that functional

regression analysis was also applied to the RNL data.1 This

showed that within the same category regression functions

for a given predictor were generally very similar for the

RNL and MSL with the notable exception of actual draft at

frequencies below approximately 100 Hz. The reason for

this latter difference is that the draft is directly involved in

the MSL calculation, whereas this is not the case for the

RNL (see Sec. IV A).

Note that the unusual trends observed for cruise vessels

for some predictors were likely caused by the small number

of measurements included in this category (only 136 were

included after subsampling for repeat measurements).

Unlike other categories, cruise vessels were extremely het-

erogeneous, hence, large deviations from the mean could be

due to a single vessel. More data would likely be needed to

better understand the relationships between predictors and

source levels for this category. Tugs also exhibited clearly

distinct trends from the other categories. This may reflect

the fact that tugs had very different design characteristics

from the other types of vessels included in the analysis (see

Fig. 4) and there was a much greater fraction of missing

design data for this category (see Table II).

The unexplained variability in the functional regression

model was quantified by calculating the residuals of the sta-

tistical model in different frequency ranges (Fig. 7). Recall

that the residuals are the differences between the estimated

and measured source levels [cf. Eq. (5)] such that

FIG. 4. (Color online) Box-and-whisker plots summarizing statistics of

design-related parameters included in the multiple-predictor functional regres-

sion model (unique vessels only). The total number of samples is indicated

above each box. Missing values are not counted. The ends of the box show

the upper and lower quartiles and the line inside the box shows the median.

The whiskers and dots extend outside of the box to the highest and lowest

observations, where the dots correspond to observations that fall more than

1.5� IQR beyond the upper and lower quartiles (IQR, interquartile range).
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ei fð Þ ¼ yi fð Þ � ½a fð Þ þ xT
i b fð Þ�: (7)

The root mean square error (RMSE) of the residuals pro-

vides an approximate estimate of the prediction error in dec-

ibels of the functional regression model versus frequency

(see Sec. IV C) such that

re fð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

i¼1

ei fð Þ2
vuut ; (8)

where N is the total number of measurements. This analysis

showed that the model residuals were approximately

FIG. 5. (Color online) The regression coefficient functions, b(f), of MSL versus frequency for all nine model predictors. The functional regression results

for different vessel categories are shown using different colored lines. Positive values of b(f) indicate that increasing the predictor was associated with higher

source levels, whereas negative values indicate that increasing the predictor was associated with lower source levels.

FIG. 6. (Color online) The regression coefficient functions, b(f), versus frequency for each predictor variable for the container ship category. The solid line is the

estimated regression coefficient function versus frequency, and the shaded area is the 95% confidence interval on the estimated regression coefficient function.
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normally distributed with RMSE ranging from 3.3 to 8.0 dB,

depending on frequency range, and with a mean RMSE of

5.1 dB when averaged across the vessel category and fre-

quency range (Table IV). Approximately normal distribu-

tions of the residuals for a population of ships with RMSE

in the range of 3–7 dB was similarly observed in earlier

measurements by Scrimger and Heitmeyer (1991) and

Wales and Heitmeyer (2002). Depending on the frequency

band and vessel category, the functional regression model

was generally able to explain 25%–50% of the variance in

the observed source level measurements in the ECHO data

set (Fig. 8). This was reflected by the fact that the model was

able to accurately reproduce the broadscale features of source

level profiles (i.e., the smooth MSL versus frequency trend)

but not the fine-scale features of the profiles.1 The fine-scale

features—particularly the narrowband spikes—were not

reproduced by the model because they did not follow a pre-

dictable trend between different vessels. Furthermore, the

functional regression model intentionally smooths the regres-

sion coefficients across frequencies to constrain the beta coeffi-

cients to be similar at neighboring frequencies and minimize

random error in the predictions. This was also consistent with

the observation of Simard et al. (2016) that “[source level] var-

iability appears to be an intrinsic property of a diverse fleet.”

The regression coefficient functions for the six vessel

categories were used to create a spreadsheet implementation

of the functional regression model that can be used to pre-

dict the source level versus frequency curve for a vessel,

given its set of operational and design parameters.1 It should

be noted that the surface grazing angle does not represent

the directivity of the source level with respect to the sea-

surface. As discussed in Sec. II C, this parameter was

intended to control (and correct) for any systematic errors in

the estimated source level due to differences in the measure-

ment geometry. Thus, when using the functional regression

model in a predictive sense, the intent is to use a nominal

fixed value of the surface grazing angle to represent the

mean measurement condition (i.e., 30 deg, corresponding to

the preferred ISO 17208–1 measurement geometry).

To aid in the interpretation of the regression functions,

predicted source level plots (Fig. 9) were created to show

the influence of individual predictors on source levels for an

average vessel in each category. That is, for each vessel

type, the median of each covariate (vessel characteristic)

value was taken to represent a “typical vessel.” These plots

FIG. 7. The relative distributions of MSL residuals for the functional

regression model by vessel category. (a) shows the overall residuals in all

decidecade bands, and (b) shows the residuals for decidecade bands in

specified frequency ranges. The dashed lines indicate the 0 dB, 610 dB and

615 dB ranges.

TABLE IV. The average RMSE of the decidecade band residuals, reðf Þ in deci-

bels, of the functional regression model by vessel category and frequency range.

Frequency range (Hz) Bulker Container Cruise Tanker Tugs Vehicle carrier

0< f� 100 5.3 5.5 6.8 5.5 6.2 4.7

100< f� 1000 4.5 4.5 5.1 4.8 5.7 3.6

1000< f� 10 000 4.3 3.9 5.0 4.2 5.6 3.6

10 000< f� 63 000 5.4 4.7 6.9 5.1 7.8 5.2

FIG. 8. (Color online) The coefficients of determination (R2) versus fre-

quency band of the multiple predictor functional regression model for each

vessel category. The results for different vessel categories are shown using

different colored lines.

J. Acoust. Soc. Am. 152 (3), September 2022 MacGillivray et al. 1557

https://doi.org/10.1121/10.0013747

https://doi.org/10.1121/10.0013747


showed the predicted source levels obtained by changing the

value of a single predictor (color-coded) while holding all

other predictors at fixed average values. For predictors hav-

ing more than 200 possible values in the data, 200 values

were randomly selected, along with the minimum and maxi-

mum value. These predicted source level plots were used to

gauge the influence of the different predictors on vessel

source levels.

IV. DISCUSSION

A. Influence of operational parameters

The statistical analysis showed that STW and actual ves-

sel draft (i.e., the two primary operational parameters) were

generally the most influential predictors of source level for all

of the vessel categories. Wind resistance had only a marginal

influence on source level, which appeared to be statistically

significant only at low frequencies (below approximately

100 Hz). Higher STW was associated with higher underwater

radiated noise for all of the vessel groups. It had the greatest

influence at high frequencies (>1000 Hz), where cavitation

dominates, and the smallest influence at intermediate frequen-

cies (100–1000 Hz), where machinery noise generally domi-

nates at speeds below cavitation inception. This observation

was consistent with results obtained during the 2017 ECHO

slowdown study in Haro Strait (MacGillivray et al., 2019).

This trend is to be expected for conventional fixed-pitch

propellers, which is the predominant type of propulsion

FIG. 9. (Color online) The func-

tional regression model predictions

for the container vessel category

showing influence of individual pre-

dictors on source levels (dB re

1 lPa m) of an average vessel. Each

panel shows the effect of varying a

different predictor in the model

while keeping the other predictors

constant. The curves show the pre-

dicted deviation from the mean

source level obtained by varying the

predictor value over the range indi-

cated by the color bar. The color of

each curve corresponds to the asso-

ciated predictor value. For covari-

ates having more than 200 possible

values in the data, 200 values were

randomly selected, as well as the

minimum and maximum values.

Narrow groups of lines correspond

to cases in which there was very lit-

tle variation with a given predictor.
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employed by vessels in this this data set, but it is not neces-

sarily the case for controllable-pitch propellers (Baudin and

Mumm, 2015; Traverso et al., 2015; McIntyre et al., 2021).

Actual vessel draft also had a strong influence on vessel

source levels, primarily at frequencies above 100 Hz. As

with STW, the strongest influence of actual vessel draft was

at high frequencies (>1000 Hz), where cavitation dominates

the noise spectrum. Although actual draft was correlated

with reduced MSL below 100 Hz, this correlation was attrib-

uted primarily to the linear dependence between monopole

intensity and source depth (which is proportional to draft) at

these frequencies. This is because the radiated sound field is

dipole rather than monopole in nature when the sound

source is within a quarter wavelength of the sea-surface, as

is typically the case for surface vessels at low frequency

(Ross, 1976). Inspection of the corresponding RNL regres-

sion coefficients, which are more closely related to the

dipole intensity at the source, suggested that actual vessel

draft had a negligible or slightly negative influence on radi-

ated noise.1 Increasing draft likely increases underwater

radiated noise because it increases hydrodynamic drag and

puts more of the hull area in contact with water.

B. Influence of design characteristics

Each of the six vessel categories shared a distinct set of

design characteristics (see Fig. 4), and the functional regres-

sion analysis likewise showed that each category exhibited

distinct source level versus frequency patterns and trends.

Whereas the design characteristics were generally less influ-

ential on vessel source levels than the operational parame-

ters, it was nonetheless possible to use the functional

regression model to rank the influence of the different

design characteristics for each vessel category. Rankings

were not provided for the cruise category because the statis-

tical significance of the results was questionable given the

relatively small sample size. Similarly, rankings were not

provided for vehicle carriers because their design character-

istics did not exhibit a sufficient range of variation to dem-

onstrate clear trends.1 For the remaining four vessel

categories, the functional regression model suggested the

following trends:

• For bulkers and tankers, length overall and main engine

RPM were the two most influential design characteristics,

followed by main engine power and vessel age. Increased

engine RPM was associated with higher source levels at

all frequencies. The influence of length overall was fre-

quency dependent: greater length was associated with

higher source levels at low frequency (<100 Hz) and

lower source levels at high frequency (>100 Hz). Older

vessels in these categories tended to have higher source

levels than newer vessels. Main engine power and design

speed appeared to have a secondary influence in these

categories.
• For container ships, length overall, main engine power,

and design speed were the most influential design charac-

teristics. Greater length overall was associated with higher

source levels at all frequencies, whereas greater engine

power was associated with lower source levels at all fre-

quencies. Main engine RPM and vessel age did not appear

to be very influential for this category.
• For tugs, main engine RPM was the only design parame-

ter that appeared to have a clearly significant trend with

source levels. Other design characteristics (length overall

included) had weak correlations with tug source levels

and their regression coefficient functions were not clearly

significant over a wide range of frequencies. Thus, design

characteristics for tugs were difficult to associate with

underwater noise emissions despite the large number of

measurements in the data set.
• In all of the categories, higher design speed was associ-

ated with lower source levels below 100 Hz and above

1000 Hz (i.e., at frequencies where cavitation dominates).

A possible explanation for this trend is that higher design

speed was associated with increased propeller cavitation

inception speed (see Sec. IV E).

When interpreting these results, it is important to note

that the statistical methods employed by this study only had

the ability to examine correlation not causation. The analy-

sis was also limited by the sampling methods inherent to the

dataset, which were collected for vessels of opportunity

transiting in and out of the Port of Vancouver (i.e., not in a

manner that controlled for design parameters). For example,

the functional regression with multiple predictors showed

that larger main engine power was associated with lower

underwater radiated noise for the container and vehicle car-

rier categories. This result is difficult to interpret unless one

also considers that main engine power was strongly corre-

lated with length overall in this category, and greater length

is more strongly associated with higher radiated noise. The

underlying relations of length, engine power, and radiated

noise are very difficult for a statistical analysis to pull apart

because the underlying predictors are often strongly

correlated.

The relationship of design predictors with source levels

was generally weakest for the tug category. This could be

explained, in part, by the fact that tugs had more missing

design information in the database than other categories (see

Table II). It could also be related to the fact that radiated tug

noise depends on the operating mode of the vessel when

transiting. For example, a tug performing escort duties (not

towing or pushing) would likely have different noise emis-

sions than a tug engaged in towing or part of an articulated-

tug-barge unit. Information was not available in the ECHO

database on whether tugs were involved in towing or push-

ing, which could affect their radiated noise emissions.

C. Uncertainty of predictions

Like any model, predictions of the functional regression

model developed in this study have an associated error or

uncertainty. If this model is intended to be used in a predic-

tive fashion, it is important to quantify the uncertainty of its

predictions. The functional regression model itself captures
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the smoothed trend of the measurements, but there remains

a component of the data variability that is unexplained by

the model. In statistical terms, this residual variance can be

used to estimate the uncertainty of the model predictions by

treating it as a random variable and calculating a prediction

interval. Functional regression is a relatively new statistical

technique and, therefore, methods for calculating prediction

intervals for functional regression models are not widely

available in popular statistics packages. Nonetheless, meth-

ods for calculating prediction intervals for simpler linear

regression models are well understood and can be used as a

guide for estimating approximate uncertainties. In linear

regression, the standard error of the prediction is propor-

tional to the Pythagorean sum of the RMSE and standard

error of the predicted value (Devore, 1995). In the present

case, the RMSE term generally dominates the sum when the

desired prediction is within the range of the covariate data

that was used to develop the model.1 Thus, we expect that

the RMSE (see Table IV) gives a good approximation to the

model uncertainty when the desired prediction is not extrap-

olated too far outside the range of the vessel designs com-

prising the ECHO dataset (see Figs. 3 and 4). Uncertainties

in vessel noise predictions remain an important topic for

future research.

D. Comparisons with prior studies

Early studies based on measurements of World War II

(WWII)-era vessels recognized that vessel speed and size

were strong predictors of underwater radiated noise (Ross,

1976). A straightforward empirical method for estimating

source levels, which emerged from this early research, was

to adjust a reference spectrum according to an assumed

power law dependence on speed and length (Breeding et al.,
1996). This approach has been refined by several investi-

gators using more recent source level data sets to incorpo-

rate class-specific spectrum levels and different speed and

length trends (Chion et al., 2017; Jiang et al., 2020;

MacGillivray and de Jong, 2021). Nonetheless, such simple

models do not address the question as to what drives differ-

ences between similar vessels.

Three recent studies applied statistical methods to

investigate a wider set of design and operational parameters

using radiated noise datasets for vessels of opportunity.

Simard et al. (2016) applied various statistical techniques to

analyze MSL measurements of 255 commercial vessels

measured in the St. Lawrence seaway, collected according

to the ANSI S12.64 (ANSI, 2014) methodology. Their anal-

ysis found statistically significant trends with ship length,

breadth, draft, and speed, but did not find a significant corre-

lation with wind speed. They presented three different possi-

ble source level models with varying numbers of predictors

and polynomial trends that furthermore varied with fre-

quency in the range 20–12 000 Hz. However, the forms of

these statistical models were rather different than those

employed for the current study, and the influence of the

various covariates was difficult to directly compare to the

trends obtained using the functional regression model.

McKenna et al. (2013) used a general additive model

(GAM) to investigate trends of radiated noise with opera-

tional conditions, design characteristics, and oceanographic

data for 593 radiated noise level measurements from the

Santa Barbara Channel. They reported significant,

frequency-dependent trends with vessel speed and length in

the range of 20–1000 Hz, as well as significant trends with

wind and wave conditions. They did not observe a signifi-

cant influence of draft, although the authors suggested that

this could have been due to the lack of variation in the load-

ing conditions of the vessels, which were measured purely

in the outbound direction from the Port of Los Angeles (the

ECHO database measured inbound and outbound vessels

from the Port of Vancouver under a wide range of loading

conditions; see Fig. 3). A prior study by McKenna et al.
(2012) also identified vessel type as an important predictor

of radiated noise, which was a key underwater radiated

noise predictor in the functional regression model. Once

again, however, the GAM model employed by McKenna

et al. (2013) was quite different than the functional regres-

sion model from the current study; therefore, it was difficult

to directly compare the observed trends.

Finally, a recent study by Chion et al. (2019) applied a

generalized linear mixed model (GLMM) to analyze pub-

licly available vessel source level datasets, including a set of

over 2100 radiated noise measurements from Veirs et al.
(2016). The GLMM analysis identified significant trends

with speed, breadth, and ship class. However, the reported

relationships were obtained only for broadband radiated

noise and were, thus, not easily compared to the frequency-

dependent source level trends obtained using the functional

regression model. These comparisons suggest that one pos-

sibility for future research would be to conduct a parametric

analysis using the statistical models of McKenna et al.
(2013), Simard et al. (2016), and Chion et al. (2019) to eval-

uate the consistency of the observed trends from different

datasets reported by different investigators. While absolute

source levels are likely to be different between studies, due

to a lack of standardization in measurement methods (Chion

et al., 2019; MacGillivray and de Jong, 2021), it may none-

theless be possible to compare trends in underwater radiated

noise with changes in predictor values between studies.

E. Data gaps and future work

Reducing underwater noise from shipping requires an

understanding of which factors are driving underwater radi-

ated noise from marine vessels. When considering ship

design from a noise control perspective, the most important

factors to consider include the following (Bahtiarian, 2017;

Spence and Fischer, 2017; Wittekind and Schuster, 2017):

• Factors influencing propeller noise and cavitation incep-

tion, including propeller design characteristics, propeller

placement, and uniformity of wake outflow; and
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• factors influencing transmission of machinery noise

through the hull, including use of quiet machinery, vibra-

tion isolation of machinery, and acoustic insulation of

machinery compartments.

No parameters describing these factors were part of the

LLI database nor were they available from other publicly

available sources. It is, furthermore, unlikely that such infor-

mation could easily be obtained for thousands of vessels of

opportunity. However, machinery sound and vibration are

influenced by main engine power and ship speed. The

exposed hull area is related to length and draft. Propellers

are designed for maximum efficiency at the vessel service

speed, but this generally comes at the cost of reduced cavita-

tion inception speed (Gray and Greeley, 1980). Thus, the

trends identified by the functional regression analysis from

this study may point to which design factors are most impor-

tant for controlling radiated noise for specific frequency

bands or vessel classes. Future studies could investigate the

relationships between these underlying design factors and

functional regression model predictions from this study. The

results of this study could also be used to refine alternative

vessel noise modelling approaches, which are based on the

detailed engineering parameters considered by naval archi-

tects, such as the methods of Wittekind (2014) or Audoly

and Rizzuto (2015).

One limitation of the approach taken in this study was

that some categorical information related to engine design

that was present in the LLI database (e.g., engine model and

make) did not easily fit into the framework of functional

regression analysis. This is because categorical variables

cannot be ranked or represented as a continuously varying

quantity. Such information might be amenable to future

analysis if additional data related to the engine design (and

noise and vibration) were to be obtained, e.g., from the

equipment vendors. Alternatively, categorical data on

engine design might be investigated using descriptive statis-

tics or by focusing on a smaller subset of the data.

The largest data gap identified during this study was the

lack of publicly available information related to propeller

design and cavitation inception speed for commercial ves-

sels. Propeller cavitation is the dominant source of underwa-

ter radiated noise for most surface ships. Therefore, efforts

to control radiated noise must address propeller cavitation.

However, data on propeller design characteristics are not

available in public databases and must often be obtained

directly from shipbuilders (who may consider such informa-

tion proprietary). Alternatively, it may be possible to esti-

mate cavitation inception speed based on other design

parameters as in Jalkanen et al. (2018). Future work could

focus on obtaining data on propeller design and cavitation

inception data for a subset of vessels in the ECHO dataset to

determine their influence on the radiated noise.

V. CONCLUSIONS

Functional regression analysis of a large database of

9880 unique vessel noise measurements found that two

operational parameters (STW and actual draft) were the

most influential predictors of source levels for six categories

of vessels. Within each category, five design characteristics

were generally less influential on vessel source levels than

the operational parameters. Of the design characteristics,

vessel size (represented via length overall) was the design

parameter with the strongest correlation to underwater radi-

ated noise for three categories of vessels. Other design

parameters that were investigated (main engine RPM, main

engine power, design speed, and vessel age) had weaker but

nonetheless statistically significant correlations with under-

water radiated noise. In all of the categories, higher design

speed was correlated with reduced source levels at frequen-

cies dominated by cavitation. Wind resistance had a minor

influence on source levels, which was nonetheless signifi-

cant below 100 Hz. The explanatory power of the model

(i.e., the coefficient of determination, R2) was largest for

those vessel categories in which vessels were measured

while operating under a wide range of speed and draft condi-

tions. Depending on the frequency band and category, the

functional regression model was generally able to explain

25%–50% of the variance in the observed source level mea-

surements in the ECHO data set. The standard deviation of

the residual model errors was 5.1 dB when averaged over

vessel category and frequency band, which reflected the

approximate uncertainty of the model predictions.

Some of the influential factors identified in this study,

such as vessel size, speed, and class, were also identified by

earlier statistical studies (McKenna et al., 2013; Simard

et al., 2016; Chion et al., 2019), however differences in data

collection and analysis methods made it difficult to directly

compare the reported trends to earlier studies. Thus, one

possible avenue for future investigation would be to validate

the functional regression model from this work against other

source level datasets. Future work could also focus on asso-

ciating the influential parameters identified during this study

with more detailed ship design characteristics used by naval

architects. The largest data gap identified by the present

study was the lack of publicly available information regard-

ing propeller design characteristics, which are undoubtedly

of importance in determining cavitation noise, a dominant

source of vessel underwater radiated noise. The ECHO pro-

gram is continuing its data collection, research, and outreach

efforts to address these and other important topics aimed at

reducing underwater radiated noise from vessels in the

marine environment.
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APPENDIX: CALCULATION OF WIND RESISTANCE
FACTOR

The cross section of a vessel’s hull that sits above the

water line experiences an aerodynamic drag force that

depends on the speed of airflow around the hull (i.e., appar-

ent wind speed) and the cross-sectional hull area that is

exposed to the airflow. In naval architecture literature, the

propulsive power required to overcome this drag force is

taken to be proportional to a parameter known as the head-

ing coefficient (Cc; Lewis, 1988), which depends on the rel-

ative wind heading with respect to the direction of travel of

a vessel. It is positive (representing a resistive force) when

the apparent wind direction is toward the bow of the ship

and negative (representing a driving force) when the appar-

ent wind direction is toward the stern of the ship (Fig. 10).

For calculating wind resistance, we use the following piece-

wise polynomial approximation to the heading coefficient

from Fig. 33 of Lewis (1988):

Cc hð Þ ¼

1:024� 2:54� 10�2hþ 2:17

�10�3h2� 4:97� 10�5h3

þ3:2� 10�7h4 if 0� � h< 71�;

0:236� 3:14� 10�2h� 5:2� 10�4h2

þ1:74� 10�6h3 if 71� � h� 180�;

8>>>>>>><
>>>>>>>:

(A1)

where h is the direction of the apparent wind vector

(0� � h � 180�) with respect to the heading of the vessel

such that h ¼ 0� is a pure headwind and h ¼ 180� is a pure

tailwind. The apparent windspeed vector is calculated from

the vector difference

v0w ¼ vw � vsog; (A2)

where vw is the windspeed vector with respect to ground,

vsog is the speed over ground vector of the vessel, and v0w is

the apparent windspeed vector in the reference frame of the

vessel. The direction of the apparent windspeed vector is

equal to

h ¼ cos�1 v0w � ĥ
v0wj j

 !
; (A3)

where ĥ is a unit vector representing the vessel heading.

A dimensionless wind resistance factor (Kw), assumed

to be proportional to the power required to overcome the

aerodynamic drag force, was then calculated from the prod-

uct of the square of the apparent wind speed and heading

coefficient such that

Kw ¼ Cc hð Þ v0w
�� ��2= 1 m2=s2

� �
: (A4)

This wind resistance factor was used as a predictor in the

statistical analysis rather than separate wind speed and

direction as it better reflected the increase in propulsion

power (and, thus, associated noise and vibration) required to

overcome wind-induced drag forces.

1See supplementary material at https://www.scitation.org/doi/suppl/

10.1121/10.0013747 for additional details regarding the statistical meth-

ods and results for a Microsoft Excel spreadsheet that implements the

functional regression model developed using the ECHO source level data-

base (Equation 6).
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